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Abstract— This paper considers networks of agents that seek
to cooperatively solve a general class of nonsmooth convex
optimization problems with an inherent distributed struc-
ture. We characterize the asymptotic convergence properties
of distributed continuous-time coordination algorithms whose
design relies on the saddle-point dynamics associated with
an augmented Lagrangian. The main technical novelty is the
identification of a nonsmooth Lyapunov function which, under
mild convexity and regularity assumptions on the optimization
problem data, allows us to further characterize the exponential
convergence rates of the proposed algorithms for optimization
subject to either equality or inequality constraints.

I. INTRODUCTION

We consider network scenarios that give rise to generic
nonsmooth convex optimization problems with an inherent
distributed structure. Such multi-agent optimization scenarios
are motivated by various applications including network
flow optimization, control of distributed energy resources,
resource allocation, and multi-sensor fusion. Within such
contexts, the goals and performance metrics of the individual
agents are naturally encoded into suitable objective functions
whose optimization may be subject to a combination of
physical, communication and operational constraints. Our
objective is to provide formal characterizations of the conver-
gence and performance properties of distributed continuous-
time coordination algorithms that allow each agent to find
their component of the optimal solution vector. We see these
characterizations as a stepping stone towards the develop-
ment of strategies that are robust against disturbances and
can accommodate a variety of resource constraints.

Literature Review. The interest in networked systems has
stimulated the synthesis of distributed strategies where agents
interact with neighbors to coordinate their computations
and solve convex optimization problems [1]. A majority of
works focus on consensus-based approaches, where individ-
ual agents maintain, communicate and update an estimate
of the complete solution vector of the optimization problem,
see e.g. [2], [3], [4] for discrete-time implementations. In
contrast, recent work [5], [6], [7] has proposed continuous-
time solvers whose convergence properties can be studied
via classical stability analysis. Of particular importance to
our work here are distributed strategies where each agent
seeks to determine its own component of the solution vector
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and interchanges information with its neighbors, independent
of the network size. A common approach to design such
distributed strategies relies on the saddle-point or primal-dual
dynamics [8] corresponding to the Lagrangian associated
with the optimization problem. The work [9] introduces set-
valued and discontinuous saddle-point dynamics specifically
tailored for linear programs. The work [10] studies primal-
dual dynamics for convex programs subject to inequality
constraints. These dynamics are modified with a projection
operator on the dual variables to preserve their nonnegativity.
In the context of neural networks, the work [11] proposes
a generalized circuit for nonsmooth nonlinear optimization.
However, the dynamics are not fully amenable to distributed
implementation in multi-agent systems due to the global
penalty parameters involved. Our work builds on a class
of saddle-point(-like) algorithms for nonsmooth convex op-
timization proposed in our earlier works [12], [13].

Statement of Contributions. We consider generic nons-
mooth convex optimization problems with an inherent dis-
tributed structure. Building on saddle-point(-like) dynamics
associated with an augmented Lagrangian, our first contribu-
tion is the identification of a nonsmooth Lyapunov function
which allows us to establish the asymptotic correctness of
the algorithms without relying on arguments based on the
LaSalle invariance principle. This finding leads to our second
contribution, the performance characterization of the pro-
posed algorithms. In particular, we establish the exponential
convergence rates of the algorithms for convex optimization
subject to either equality or inequality constraints. The proofs
are omitted for reasons of space and will appear elsewhere.

II. PRELIMINARIES

We let 〈·, ·〉 denote the Euclidean inner product. Let
1n = (1, . . . , 1) ∈ Rn. Given a vector x ∈ Rn, let
[x]+ = (max{0, x1}, . . . ,max{0, xn}) ∈ Rn≥0. Given a set
X ⊂ Rn, we denote its convex hull by coX , its interior
by intX , its boundary by bdX , and its closure by clX .
Let B(x, δ) = {y ∈ Rn | ‖y − x‖ < δ}. A set-valued map
F : Rn ⇒ Rn maps elements of Rn to elements of 2R

n

. The
set-valued map F is monotone if 〈x − y, ξ(x) − ξ(y)〉 ≥ 0
whenever ξ(x) ∈ F (x), ξ(y) ∈ F (y), and strictly monotone
if the inequality is strict when x 6= y. Finally, F is strongly
monotone if there exists η > 0 such that 〈x − y, ξ(x) −
ξ(y)〉 ≥ η‖x− y‖2 whenever ξ(x) ∈ F (x), ξ(y) ∈ F (y).

A. Nonsmooth Analysis

We review here relevant notions from nonsmooth analysis
following [14]. A function f : Rn → R is locally Lipschitz
at x ∈ Rn if there exist δx > 0 and Lx ≥ 0 such that



|f(y) − f(z)| ≤ Lx‖y − z‖ for all y, z ∈ B(x, δx). The
function f is locally Lipschitz if it is locally Lipschitz at x,
for all x ∈ Rn. A convex function f : Rn → R is locally
Lipschitz, cf. [15, Theorem 3.1.1, p. 16]. Let Ωf ⊂ Rn be
the set of points at which f fails to be differentiable, and
let S denote any other set of measure zero. The generalized
gradient ∂f : Rn ⇒ Rn of f at x ∈ Rn is defined by

∂f(x) = co
{

lim
i→+∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf

}
.

A set-valued map F : Rn ⇒ Rn is upper semicontinuous
if, for all x ∈ Rn and ε > 0, there exists δ > 0 such
that F (y) ⊂ F (x) + B(0, ε) for all y ∈ B(x, δ). We say F
is locally bounded if, for every x ∈ Rn, there exist δ > 0 and
ε > 0 such that ‖ξ‖ ≤ ε for all ξ ∈ F (y) and all y ∈ B(x, δ).
The following result summarizes some important properties
of the generalized gradient [14].

Proposition 2.1 (Properties of the generalized gradient). Let
f : Rn → R be locally Lipschitz at x ∈ Rn. Then,

(i) ∂f(x) ⊂ Rn is nonempty, convex and compact, and
‖ξ‖ ≤ Lx, for all ξ ∈ ∂f(x),

(ii) ∂f(x) is upper semicontinuous at x ∈ Rn.

Let C1,1(Rn,R) denote the class of functions f : Rn → R
that are continuously differentiable and whose gradient map
∇f : Rn → Rn is locally Lipschitz. The generalized Hessian
∂(∇f) : Rn ⇒ Rn×n of f at x ∈ Rn is defined by

∂(∇f)(x) = co
{

lim
i→+∞

∇2f(xi) | xi → x, xi /∈ Ωf

}
.

By construction, ∂(∇f)(x) is a nonempty, convex and com-
pact set of symmetric matrices, cf. [16].

B. Set-Valued Dynamical Systems

We next consider set-valued and locally projected dy-
namical systems [17], [18] defined by means of differential
inclusions [19]. Let X ⊂ Rn be open and let F : X ⇒ Rn
be a set-valued map. Consider the differential inclusion

ẋ(t) ∈ F (x(t)), x(t0) = x0 ∈ X. (DI)

A solution of (DI) on an interval [t0, t1] ⊂ R is an absolutely
continuous map x : [t0, t1] → X such that ẋ(t) ∈ F (x(t))
for almost all (a.a.) t ∈ [t0, t1]. The existence of local
solutions of (DI) starting from x0 ∈ X is guaranteed by
the following result [19].

Lemma 2.2 (Existence of local solutions). Let F : X ⇒ Rn
be locally bounded, upper semicontinuous with nonempty,
convex and compact values. Then, given x0 ∈ X , there exists
a local solution x : [t0, t1]→ X of (DI) starting from x0.

Let f : X → R be locally Lipschitz. The set-valued Lie
derivative LF f : X ⇒ R of f with respect to F at x ∈ X
is defined by

(LF f)(x) =
{
ψ ∈ R | ∃ξ ∈ F (x) : 〈ξ, π〉 = ψ,∀π ∈ ∂f(x)

}
.

Let G ⊂ Rn be a nonempty, closed and convex set. Let
the distance function dG : Rn → R be defined by dG(x) =

infy∈G‖x− y‖. The tangent cone and the normal cone of G
at x ∈ G are, respectively,

TG(x) = cl
⋃
δ>0

1

δ
(G− x), NG(x) = cl

⋃
η≥0

η∂dG(x).

Let projG(x) = argminy∈G‖x − y‖. The orthogonal (set)
projection of a nonempty, convex and compact set F (x) ⊂
Rn at x ∈ G with respect to G ⊂ Rn is defined by

ΠG(x, F (x)) =
⋃

ξ∈F (x)

lim
δ↘0

projG(x+ δξ)− x
δ

. (1)

Note that if x ∈ intG, then ΠG(x, F (x)) reduces to the set
F (x). Consider now the projected differential inclusion

ẋ(t) ∈ ΠG(x, F (x))(t), x(t0) = x0 ∈ X, (PDI)

for a.a. t ∈ [t0, t1]. The following result states conditions
under which local solutions of (PDI) exist [20].

Lemma 2.3 (Existence of local solutions of projected differ-
ential inclusions). Let G ⊂ Rn and let F : Rn ⇒ Rn satisfy
the hypothesis of Lemma 2.2. If there exists c > 0 such that,
for every x ∈ G,

sup
ξ∈F (x)

‖ξ‖ ≤ c(1 + ‖x‖),

then, for any x0 ∈ G, there exists a local solution x :
[t0, t1]→ G of (PDI) starting from x0.

III. PROBLEM STATEMENT

Consider the constrained minimization problem

min{f(x) | h(x) = 0p, g(x) ≤ 0m}, (P)

where f : Rn → R and g : Rn → Rm are convex and
locally Lipschitz, and h : Rn → Rp is affine, i.e., h(x) =
Ax− b, with A ∈ Rp×n and b ∈ Rp, where p ≤ n. Let the
equality and inequality constraint sets be defined by H =
{x ∈ Rn | h(x) = 0p} and G = {x ∈ Rn | g(x) ≤
0m}, respectively. We assume that the (closed and convex)
set of optimal solutions S = {x∗ ∈ H ∩ G | f(x∗) ≤
f(x), ∀x ∈ H ∩G} is nonempty. Throughout the paper we
assume that (P) satisfies the strong Slater condition [15], i.e.,

(H1) rank(A) = p, i.e., the rows of matrix A ∈ Rp×n are
linearly independent,

(H2) ∃x ∈ Rn such that Ax = b and gk(x) < 0 for all
k ∈ {1, . . . ,m}.

Let κ > 0 and let the augmented Lagrangian Lκ : Rn ×
Rp → R associated with (P) be defined by

Lκ(x, λ) = f(x) +
1

2
‖h(x)‖2 + 〈λ, h(x)〉+ κ〈1m, [g(x)]+〉,

where λ ∈ Rp is a Lagrange multiplier. Under the regu-
larity assumptions (H1)–(H2), for every x∗ ∈ S there exist
(λ∗, µ∗) ∈ Rp × Rm≥0 with (λ∗, µ∗) 6= (0p, 0m) such that
(x∗, λ∗) is a saddle point of Lκ, i.e.,

Lκ(x∗, λ) ≤ Lκ(x∗, λ∗) ≤ Lκ(x, λ∗),

for all (x, λ) ∈ Rn × Rp, given that κ ≥ ‖µ∗‖∞. We
denote the (closed and convex) set of saddle points of Lκ



by sp(Lκ). The following result from [12] reveals an inti-
mate relationship between saddle points of Lκ and optimal
solutions of (P).

Lemma 3.1 (Saddle-point Theorem). Let Lκ : Rn×Rp → R
and let (x∗, λ∗) ∈ sp(Lκ) with κ > ‖µ∗‖∞ for some dual
solution µ∗ of (P). Then, x∗ is an optimal solution of (P).

Lemma 3.1 identifies a condition under which the penalty
parameter κ is exact [21]. Given this result, instead of
solving (P), we seek to design strategies that find saddle
points of Lκ. Since the bivariate augmented Lagrangian Lκ
is, by definition, convex-concave, a natural approach to find
the saddle points is via its associated saddle-point dynamics.

IV. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION

We recall the optimization algorithms developed in our
previous work [13]. The main technical novelty is the iden-
tification of a nonsmooth Lyapunov function which allows
us to establish the asymptotic correctness of the algorithms
through a Lyapunov, rather than a LaSalle, argument. As we
show later, this function plays a key role in characterizing
the exponential convergence rates of the algorithms.

A. Saddle-Point Dynamics

Consider the saddle-point dynamics associated with the
augmented Lagrangian Lκ defined over Rn × Rp,{

ẋ(t) ∈ −∂xLκ(x, λ)(t), x(t0) = x0 ∈ Rn,
λ̇(t) ∈ +∂λLκ(x, λ)(t), λ(t0) = λ0 ∈ Rp,

(SPD)

for a.a. t ∈ [t0, t1]. Note that the existence of local solutions
(x, λ) : [t0, t1]→ Rn×Rp of (SPD) starting from (x0, λ0) ∈
Rn × Rp is guaranteed by Proposition 2.1 and Lemma 2.2.
Our next result characterizes the asymptotic convergence of
the solutions of (SPD) to the set of saddle points of Lκ.

Theorem 4.1 (Asymptotic convergence). Let κ > 0 and let
(x̃, λ̃) ∈ sp(Lκ). Define the map Vκ : Rn × Rp → R≥0 by

Vκ(x, λ) = min
(x∗,λ∗)∈sp(Lκ)

(1

2
‖x− x∗‖2 +

1

2
‖λ− λ∗‖2

)
+ Lκ(x, λ)− Lκ(x̃, λ̃).

If ∂f is strictly monotone, then (LSPDVκ)(x, λ) ⊂ (−∞, 0)
for all (x, λ) ∈ (Rn × Rp) \ sp(Lκ).

The theorem states that the set of saddle points of Lκ is
strongly globally asymptotically stable under (SPD), given
that f is strictly convex. Point-wise convergence of the so-
lutions of (SPD) in the set sp(Lκ) follows from the stability
of each individual saddle point of Lκ and the asymptotic
stability of the set sp(Lκ), established in Theorem 4.1.

Corollary 4.2 (Point-wise asymptotic convergence). Any
solution (x, λ) : [t0,+∞) → Rn × Rp of (SPD) starting
from (x0, λ0) ∈ Rn×Rp converges asymptotically to a point
in the set sp(Lκ).

Remark 4.3 (Convergence for linear programs). The strong
global asymptotic stability of sp(Lκ) under (SPD) can also

be established using the alternative Lyapunov function V :
Rn × Rp → R≥0 defined by

V (x, λ) =
1

2
‖x− x∗‖2 +

1

2
‖λ− λ∗‖2,

where (x∗, λ∗) is an arbitrary saddle point of Lκ. In fact, one
can deduce that the Lie derivative of V is negative semidef-
inite, implying stability, albeit not asymptotic stability. To
conclude the latter, one can resort [12] to the LaSalle invari-
ance principle for differential inclusions [22]. This approach
has (i) the advantage that it only requires monotonicity of ∂f ,
instead of strict monotonicity, and is therefore applicable to
linear programs, and (ii) the disadvantage that, V not being
a strict Lyapunov function, it cannot be used to characterize
the convergence rate of the algorithm. •

We note that the saddle-point dynamics (SPD) need not
converge to an optimal solution of (P), unless the penalty
parameter κ is exact, cf. Lemma 3.1. In fact, the lower bound
on κ in Lemma 3.1 is characterized by some dual solution
µ∗ of (P), which is unknown a priori. Our forthcoming
discussion proposes dynamics that do not rely on the penalty
parameter κ, yet enjoy the same convergence properties as
the saddle-point dynamics (SPD).

B. Saddle-Point-Like Dynamics

Recall that G ⊂ Rn denotes the (closed and convex)
inequality constraint set associated with (P). Let the set-
valued flow F : G× Rp ⇒ Rn be defined by

F (x, λ) = −∇
(1

2
‖h(x)‖2

)
−∇x〈λ, h(x)〉 − ∂f(x).

The definition of F is motivated by the fact that, for (x, λ) ∈
intG × Rp, we have −∂xLκ(x, λ) = {F (x, λ)}. Consider
now the saddle-point-like dynamics defined over G× Rp,{

ẋ(t) ∈ ΠG(x, F (x, λ))(t), x(t0) = x0 ∈ G,
λ̇(t) ∈ +∂λLκ(x, λ)(t), λ(t0) = λ0 ∈ Rp,

(SPLD)

for a.a. t ∈ [t0, t1], where ΠG is defined in (1). The existence
of local solutions (x, λ) : [t0, t1] → G × Rp of (SPLD) is
guaranteed by Proposition 2.1 and Lemma 2.3.

We now investigate the geometric interpretation of ΠG for
locally projected dynamical systems [18]. Let the set of unit
outward normals to G at x ∈ bdG be defined by

N ]
G(x) = NG(x) ∩ bdB(0, 1).

Note that if (x, λ) ∈ intG× Rp, then, by definition of ΠG,
it follows ΠG(x, F (x, λ)) = F (x, λ). However, if (x, λ) ∈
bdG× Rp, then

ΠG(x, F (x, λ)) =
⋃

ξ∈F (x,λ)

ξ −max
{

0, 〈ξ, n∗(x, ξ)〉
}
n∗(x, ξ),

where
n∗(x, ξ) ∈ argmax

n∈N]G(x)

〈ξ, n〉. (2)

Note that if {ξ} ∩ TG(x) 6= ∅ for some (x, λ) ∈ bdG ×
Rp and ξ ∈ F (x, λ), then supn∈N]G(x)〈ξ, n〉 ≤ 0, and by
definition of ΠG, no projection needs to be performed. The



following result establishes the existence and uniqueness of
the maximizer n∗(x, ξ) of (2) whenever {ξ} ∩ TG(x) = ∅,
i.e., whenever the projection needs to be computed.

Lemma 4.4 (Existence and uniqueness). Let (x, λ) ∈ bdG×
Rp. If there exists ξ ∈ F (x, λ) such that supn∈N]G(x)〈ξ, n〉 >
0, then the maximizer n∗(x, ξ) of (2) exists and is unique.

We note that the computational complexity to solve (2)
not only depends on the problem dimensions n, p,m ∈
N, but also on the convexity and regularity assumptions
on the optimization problem data, i.e., f, h and g. Our
strategy to show that the saddle-point-like dynamics (SPLD)
enjoy the same convergence properties as the saddle-point
dynamics (SPD) is to establish that, in fact, its solutions are
also solutions of (SPD), given that the penalty parameter κ
is sufficiently large. The following result makes this precise.

Proposition 4.5 (Relationship of solutions). Let (x, λ) :
[t0,+∞) → G × Rp be any solution of (SPLD) starting
from (x0, λ0) ∈ G× Rp. Then, there exists κ > 0 such that
the solution is also a solution of (SPD).

Proposition 4.5 states that the set of solutions of (SPD)
is, in general, richer than the set of solutions of (SPLD),
given that κ exceeds a certain threshold. We note that the
saddle-point-like dynamics (SPLD) do not incorporate any
knowledge of the penalty parameter κ (as the saddle-point
dynamics (SPD)) and are therefore amenable to distributed
implementation in multi-agent systems.

C. Distributed Implementation

Consider a network of n ∈ N agents whose commu-
nication topology is represented by an undirected graph
G = (V, E), i.e., V = {1, . . . , n} ⊂ N and E ⊂ V × V
is symmetric. The objective of the agents is to coopera-
tively solve the constrained minimization problem (P). We
assume that the aggregate objective function f is additively
separable, i.e., f(x) =

∑n
i=1 fi(xi), where fi and xi ∈ R

denote the local objective function and state associated with
agent i ∈ {1, . . . , n}, respectively. Additionally, we assume
that the constraints of (P) are compatible with the network
topology described by G. Formally, we say the inequality
constraints gk(x) ≤ 0, k ∈ {1, . . . ,m}, are compatible with
G if gk can be expressed as a function of some components
of the network state x = (x1, . . . , xn) ∈ Rn, which induce
a complete subgraph of G. A similar definition can be stated
for the equality constraints h`(x) = 0, ` ∈ {1, . . . , p}.

We now show that the saddle-point-like dynamics (SPLD)
are well-suited for distributed implementation. If (x, λ) ∈
intG× Rp, then each agent i ∈ {1, . . . , n} implements

ẋi +
∑

{`:a`i 6=0}

a`i

( ∑
{j:a`j 6=0}

a`jxj − b` + λ`

)
∈ −∂fi(xi),

and some dual dynamics

λ̇` =
∑

{i:a`i 6=0}

a`ixi − b`.

If (x, λ) ∈ bdG× Rp, then each agent i implements

ẋi ∈
⋃

ξi∈Fi(x,λ)

ξi −max

{
0,
∑

{j:n∗
j 6=0}

ξjn
∗
j (x, ξ)

}
n∗i (x, ξ),

and some dual dynamics. We say that the saddle-point-like
dynamics (SPLD) are distributed over G if the following
conditions are satisfied:

(C1) The network constraints h, g are compatible with G.
(C2) Agent i knows its state xi and objective function fi.
(C3) Agent i knows its neighbors’ states xj , their objec-

tive functions fj , and
(i) the non-zero elements of every row of A and

every b` for which a`i 6= 0, and
(ii) the active inequality constraints gk in which it

is involved.
In contrast to consensus-based distributed algorithms where
each agent maintains, communicates and updates an estimate
of the complete solution vector, the saddle-point-like dynam-
ics (SPLD) only require each agent to store and communicate
its own component of the solution vector.

V. PERFORMANCE CHARACTERIZATION

In this section, we characterize the performance properties
of the saddle-point(-like) dynamics. The nonsmooth Lya-
punov function proposed in Section IV-A allows us to go
beyond the qualitative statement of asymptotic convergence
and instead precisely characterize the exponential conver-
gence rates of the algorithms. We separate our study in two
cases depending on whether the optimization is subject to
equality or inequality constraints.

A. Distributed Optimization under Inequality Constraints

Consider the unconstrained minimization problem

min{f(x) + κ〈1m, [g(x)]+〉 | x ∈ Rn}, (PI)

where κ > 0. Let Fκ : Rn → R be defined by Fκ(x) =
f(x) + κ〈1m, [g(x)]+〉. The dynamics associated with (PI)
reduce to the gradient dynamics defined over Rn,

ẋ(t) ∈ −∂Fκ(x)(t), x(t0) = x0 ∈ Rn, (GD)

for a.a. t ∈ [t0, t1]. The existence of local solutions x :
[t0, t1]→ Rn of (GD) is guaranteed by Proposition 2.1 and
Lemma 2.2. Our analysis relies on the following assumption:

(H3) The set of equilibria eq(∂Fκ) = {x∗ ∈ Rn | 0 ∈
∂Fκ(x∗)} of (GD) is nonempty, convex and compact.

Our next result characterizes the performance properties
of the solutions of (GD).

Theorem 5.1 (Performance characterization). Let κ > 0 and
let Fκ : Rn → R. The following statements hold:

(i) If ∂f is monotone, then eq(∂Fκ) is strongly stable
under (GD).

(ii) If ∂f is strictly monotone, then eq(∂Fκ) is strongly
asymptotically stable under (GD).

(iii) If ∂f is strongly monotone, then eq(∂Fκ) is strongly
exponentially stable under (GD).



The result states that the performance properties of the
solutions of (GD) merely depend on the convexity of the
objective function. In particular, if f is strongly convex, then
the convergence rate of (GD) is exponential, determined by
the strong convexity modulus η > 0. Point-wise convergence
of the solutions of (GD) in the set eq(∂Fκ) follows from
Corollary 4.2. The following result is an immediate conse-
quence of Proposition 4.5 and Theorem 5.1(iii).

Corollary 5.2 (Locally projected gradient dynamics). Let
∂f : Rn ⇒ Rn and consider the dynamics

ẋ(t) ∈ ΠG(x,−∂f(x))(t), x(t0) = x0 ∈ G, (PGD)

for a.a. t ∈ [t0,+∞). If ∂f is strongly monotone, then any
solution x : [t0,+∞) → G starting from x0 ∈ G converges
exponentially fast to the singleton set eq(ΠG) = {x∗ ∈ G |
0 ∈ ΠG(x∗,−∂f(x∗))}.

The following example illustrates that the locally projected
gradient dynamics (PGD) perform well within the exponen-
tial performance bound obtained in Theorem 5.1(iii).
Example 1 (Projected gradient dynamics for inequality con-
strained optimization). Consider a network of n = 10 agents
that seek to cooperatively solve the minimization problem

minimize
x∈Rn

∑
i∈{1,...,n}

x2i /2 + |xi|

subject to ‖(x1 − 2, . . . , x5 − 2)‖∞ ≤ 1,

‖(x6 + 2, . . . , xn + 2)‖∞ ≤ 1,

(EX1)

where xi ∈ R denotes the state associated with agent
i ∈ {1, . . . , n}. The generalized gradient of xi 7→ fi(xi) =
x2i /2 + |xi| at xi ∈ R is

∂fi(xi) =


{xi + 1}, if xi > 0,

[−1, 1], if xi = 0,

{xi − 1}, if xi < 0.

Figure 1 illustrates the execution of (PGD). •

B. Distributed Optimization under Equality Constraints

Consider the constrained minimization problem

min
{
f(x) +

1

2
‖h(x)‖2

∣∣ h(x) = 0p

}
. (PE)

The Lagrangian L : Rn × Rp → R associated with (PE)
takes the form

L(x, λ) = f(x) +
1

2
‖h(x)‖2 + 〈λ, h(x)〉,

Within this section we rely on the following assumptions:
(H4) The function f belongs to class C1,1(Rn,R).
(H5) The set of saddle points of L is nonempty, convex

and compact.
Under the assumption (H4), the saddle-point dynamics asso-
ciated with the Lagrangian L defined over Rn × Rp read{

ẋ(t) +∇xL(x, λ)(t) = 0n, x(t0) = x0 ∈ Rn,
λ̇(t)−∇λL(x, λ)(t) = 0p, λ(t0) = λ0 ∈ Rp,

(SP)

for all t ∈ [t0, t1]. The existence and uniqueness of local
solutions (x, λ) : [t0, t1]→ Rn×Rp of (SP) is guaranteed by
assumption (H4) and the Picard-Lindelöf theorem, cf. [23].
Our next result characterizes the performance of (SP).

Theorem 5.3 (Performance characterization). Let L : Rn ×
Rp → R. The following statements holds:

(i) If ∇f is monotone, then sp(L) is stable under (SP).
(ii) If ∇f is strictly monotone, then sp(L) is asymptotically

stable under (SP).
(iii) If ∂(∇f) � 0, then sp(L) is exponentially stable

under (SP).

Theorem 5.3(iii) states that if the generalized Hessian of f
is positive definite, then the convergence rate of the solutions
of (SP) is exponential. However, the performance bound not
only depends on the initial condition (x0, λ0) ∈ Rn × Rp,
but also on the convexity and regularity assumptions on
the objective function. The following example illustrates the
result obtained in Theorem 5.3(iii).
Example 2 (Saddle-point dynamics for equality constrained
optimization). Consider a group of n = 10 agents whose
objective is to cooperatively solve the minimization problem

minimize
x∈Rn

∑
i∈{1,...,n}

x2i /2

subject to Circn(0, 1, 1/2)x = 1n,

(EX2)

where Circn denotes the tridiagonal circulant matrix of
dimension n × n. The network topology is encoded in
the sparsity structure of Circn. The generalized Hessian of
xi 7→ fi(xi) = x2i /2 at xi ∈ R reduces to the singleton set

∂(∇fi)(xi) = {∇2fi(xi)}.

Figure 2 illustrates the execution of (SP). •

VI. CONCLUSIONS

We have studied the asymptotic convergence properties
of distributed continuous-time coordination algorithms for
networks of agents that seek to collectively solve a class
of nonsmooth convex optimization problems. We have iden-
tified a nonsmooth Lyapunov function which, under mild
convexity and regularity assumptions on the optimization
problem data, allows us to go beyond the qualitative state-
ment of asymptotic convergence. In particular, we have
explicitly characterized the exponential convergence rates of
the proposed algorithms for optimization subject to either
equality or inequality constraints. Future work will character-
ize the convergence rates of the algorithms for problems with
both equality and inequality constraints, study the robustness
properties of the proposed algorithms against disturbances
and link failures, design opportunistic state-triggered im-
plementations, and explore the extension to optimization
scenarios defined over infinite-dimensional state spaces.
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Fig. 1. (a) Solutions of the locally projected gradient dynamics (PGD) solving the nonsmooth convex program (EX1). The local projection prevents the
solutions of (PGD) from violating the inequality constraints (depicted by the dashed lines) of (EX1) at any time instance. The initial conditions are randomly
chosen within the feasible set. (b) Since the aggregate objective function x 7→ f(x) = 1/2‖x‖2 + ‖x‖1 of (EX1) is strongly convex, the hypothesis of
Corollary 5.2 is satisfied and thus, the solutions of (PGD) converge to the singleton set eq(ΠG) within the exponential performance bound (depicted by
the dashed line). (c) The network topology under which the the locally projected gradient dynamics (PGD) are amenable to distributed implementation.
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Fig. 2. (a) The network state evolution of the saddle-point dynamics (SP) solving the convex program (EX2). The initial conditions are randomly chosen
within the interval [−1, 1]. (b) Since ∂(∇f)(x) � 0 for all x ∈ Rn (in fact, the aggregate objective function x 7→ f(x) = 1/2‖x‖2 of (EX2) is strongly
convex), the hypothesis of Theorem 5.3(iii) is satisfied and therefore, the solutions of (SP) converge to the singleton set sp(L) within the exponential
performance bound (depicted by the dashed line). (c) The network topology under which the saddle-point dynamics (SP) are distributed implementable.
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