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Abstract. In a real Hilbert space setting, we investigate the asymptotic properties of the solu-
tions of a second-order differential system in view of linearly constrained convex minimization. The
inertial dynamics are governed by a Hessian-driven damping term associated with the convex func-
tion to be minimized and potential effects induced by the linear constraints. We provide conditions
on both the damping and the potential for which the solutions converge towards some feasible point
of the convex minimization problem; this convergence is towards some minimizer provided that the
solutions’ initial data is specifically preselected. In addition, we present asymptotic estimates on
the convergence rate of the solutions depending on the interaction between damping and potential
effects. Our analysis is mainly based on energy-like arguments that capture the dissipative nature
of the inertial dynamics by means of a Bregman distance. We complement our study with the fact
that the second-order dynamics admit a first-order representation in terms of the Arrow–Hurwicz
differential system. Numerical experiments further illustrate our theoretical findings.
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1. Introduction. Let X,Y be real Hilbert spaces endowed with inner products
〈 · , · 〉X , 〈 · , · 〉Y and induced norms ‖ · ‖X , ‖ · ‖Y . Given a convex and twice continu-
ously differentiable function f : X → R and a continuous affine operator h : X → Y ,
we investigate the second-order differential system

(ID) ẍ+ ∇2f(x)ẋ + ∇‖h(x)‖2
Y /2 = 0X ,

where ∇‖h( · )‖2
Y /2 denotes the gradient of ‖h( · )‖2

Y /2 and ∇2f refers to the Hessian
of f . The first and second derivatives of a solution x : [0,+∞) → X of (ID) are
denoted by ẋ and ẍ, respectively.

Although the Inertial Dynamics (ID) may appear in various physical contexts as
Liénard-type equation [23], our motivation to study (ID) pertains to the dynamical
approach of solving the linearly constrained convex minimization problem

(P) inf {f(x) | h(x) = 0Y }.

The constrained nature of (P) thereby necessitates specific structural properties of
the dynamics to account for the minimization of f relative to h. As a decisive feature
of (ID), the objective function f enters the dynamics through the Hessian-driven
damping operator ∇2f( · ) : X → X while the constraint function h further induces
potential effects via the gradient mapping ∇‖h( · )‖2

Y /2 : X → X . The minimizing
properties of (ID) with respect to the convex minimization problem (P) are originated
by this structure: Under suitable assumptions, the potential effects tend to stabilize
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the solutions of (ID) asymptotically towards feasible points of (P) whereas the geo-
metric damping further allows one to asymptotically select for a minimizer of (P).

The structural properties of (ID) are in contrast to the various classical (inertial)
approaches for unconstrained minimization, where the objective function typically in-
duces the potential effects via its gradient; see, e.g., [1, 2, 6, 7, 8, 17]. While these
methods in general allow for a fast minimization of the objective function, they re-
quire some arrangement to explicitly take constraints into account. Our study aims
to highlight that the linearly constrained convex minimization problem (P) can be
dynamically approached via the second-order differential system (ID) by interchang-
ing the role of the damping and potential. Within this context, we aim at providing
conditions on f and h for which the solutions of (ID) converge, at an explicitly char-
acterized rate, towards some minimizer of (P).

Motivation and perspectives. To motivate our study, let us comment on the
various perspectives of the inertial dynamics (ID) relative to the convex minimization
problem (P).

“Generalized steepest descent”. We first note that the inertial dynamics (ID) may
be regarded as a differential version of the classical Arrow–Hurwicz evolution system

(AH)

{

ẋ+ ∇f(x) + h′(x)∗λ = 0X

λ̇− h(x) = 0Y

with h′ denoting the Fréchet derivative of h, and h′(x)∗ the adjoint operator of h′(x).
Indeed, differentiating the first component of the (AH) model yields

ẍ+ ∇2f(x)ẋ+ h′(x)∗λ̇ = 0X .

The elimination of the dual variable by means of the second component of (AH) then
leads to the inertial dynamics (ID). Conversely, an immediate integration shows that
any solution x : [0,+∞) → X of (ID) with corresponding initial data (x0,−∇f(x0)) ∈
X ×X further obeys the integro-differential system

ẋ+ ∇f(x) + h′(x)∗

∫

h(x) = 0X .

Introducing the auxiliary variable λ : [0,+∞) → Y as the integral of h(x) then gives
rise to the (AH) differential system.

The (AH) dynamics were in essence originated by Arrow, Hurwicz, and Uzawa [4]
and are known to be intimately related to the mini-maximization of the Lagrangian

L : X × Y −→ R

(x, λ) 7−→ f(x) + 〈λ, h(x)〉Y

associated with the convex minimization problem (P). In fact, the (AH) differential
system may be considered as a “generalized steepest descent method” acting on the
convex-concave bifunction L which involves “steepest descent” in the first variable and
“steepest ascent” in the second variable simultaneously. Moreover, it is well known
that the zeros of the maximal monotone operator

(x, λ) 7−→ (∇f(x) + h′(x)∗λ,−h(x)),

that is, the “generator” of the (AH) differential system, are precisely the saddle points
of the Lagrangian L, cf. Rockafellar [28], which in turn are nothing but the solution
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pairs of (P) and its associated dual; we refer to Ekeland and Témam [19] for a general
exposition on duality in convex optimization.

The previous discussion suggests that the inertial dynamics (ID) admit an inher-
ent connection to the convex minimization problem (P) through the first-order differ-
ential system (AH). In this work, we explicitly characterize the minimizing properties
of (ID) with respect to (P) without relying on the (AH) dynamics. As the differen-
tial nature of (ID) suggests, a particular preselection of its solutions’ initial data will
be essential to maintain the connection to the convex minimization problem (P). In
this respect, it is interesting to note that the inertial dynamics (ID) neither involve
any projection argument nor rely on any auxiliary variable to approach the linearly
constrained convex minimization problem (P)—however, at the cost of second-order
information on the objective function f .

“Heavy ball with friction” dynamics. The inertial dynamics (ID) also derive nat-
urally from the “Heavy Ball with friction” differential system

(HB) ẍ+ αẋ+ ∇‖h(x)‖2
Y /2 = 0X

associated with the convex potential function ‖h( · )‖2
Y /2. The dynamics (HB) were

first introduced, from a more general perspective, by Polyak [25, 26] and are known
to inherit remarkable minimizing properties; cf. Alvarez [1] and Attouch, Goudou,
and Redont [8] for an exposition involving general convex potential effects.

In the above (HB) model, the viscous damping operator α Id : X → X , α > 0,
may render the system dissipative, but it acts isotropically on the velocity term ẋ
and neglects the geometry of the potential function ‖h( · )‖2

Y /2. However, geometric
damping effects may be crucial to diminish transversal oscillations, as observed by
Alvarez et al. [2], or even to accelerate the convergence; see, e.g., Attouch et al. [7].
The importance of an anisotropic damping term in the (HB) model has already been
noticed by Alvarez [1], who considered a generalized version of the differential system

ẍ+ Γẋ+ ∇‖h(x)‖2
Y /2 = 0X ,

where Γ : X → X is an elliptic bounded self-adjoint linear operator; we also refer to
Boţ and Csetnek [12] for a similar type of equation involving non-potential effects.

In this work, we naturally extend the (HB) model by introducing a general
Hessian-driven damping term, thus leading to the inertial dynamics (ID). As a de-
cisive feature of (ID), the damping operator ∇2f( · ) : X → X is adapted to the
objective function f of the convex minimization problem (P) rather than to the po-
tential function ‖h( · )‖2

Y /2 associated with the constraint function h. This particular
and distinct feature allows us, as we shall see, to infer the minimizing properties of
(ID) relative to the linearly constrained convex minimization problem (P).

Dynamics with variable metric. Finally, we remark that the inertial dynamics (ID)
may also be seen as a second-order extension of the first-order differential system

(SD) ∇2f(x)ẋ+ ∇‖h(x)‖2
Y /2 = 0X .

It is customary to interpret (SD) as the Steepest Descent method associated with the
convex potential function ‖h( · )‖2

Y /2 and with variable metric induced by the Hessian
of f . Indeed, assuming that ∇2f( · ) is non-degenerate, the (SD) model equivalently
reads as

ẋ+ ∇H‖h(x)‖2
Y /2 = 0X ,

where ∇H‖h( · )‖2
Y /2 denotes the gradient of ‖h( · )‖2

Y /2 relative to the inner product
〈∇2f( · ) · , · 〉X ; we refer to Alvarez, Bolte, and Brahic [3] and Attouch et al. [5] for
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a general study of the steepest descent method with respect to Hessian–Riemannian
metrics induced by Legendre-type convex functions.

In the (SD) model, the Hessian ∇2f( · ) may be degenerate, resulting in an ill-
posed problem where (SD) is no longer defined as a differential system. Adding the
second derivative ẍ to (SD) however causes a regularizing effect which renders the
equation well-posed even in the case of a degenerate Hessian. In our work, we explicitly
take the inertial effect induced by the acceleration term ẍ into account and further
adhere to the notion of a variable metric relative to the Hessian ∇2f( · ) in (ID).
Within this context, we highlight the role of the Bregman distance associated with f
(cf. Bregman [13]) defined by

Df : X ×X −→ R

(y, x) 7−→ f(y) − f(x) − 〈∇f(x), y − x〉X ,

which implicitly captures the geometry of the objective function f of the convex min-
imization problem (P) and naturally relates it, as we shall see, to the Hessian ∇2f( · )
in (ID).

Presentation of the results. The analysis of the asymptotic behavior of the
solutions of (ID) relies essentially on the decay property of the energy function

t 7−→ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y .

In the case of a positive Hessian operator ∇2f( · ), we observe that energy may
not be dissipated but conserved along the solutions of (ID); cf. Hale [20] and Haraux
[21] for an exposition on dissipative systems. As a consequence, we infer that any
non-stationary solution x(t) of (ID) fails to converge as t → +∞, provided that

ẋ(t) ∈ ker ∇2f(x(t)), ∀t ≥ 0.

The above condition appears naturally as it reflects the vanishing damping effect of
the Hessian ∇2f( · ) on the solutions of (ID). Despite the potential lack of damping,
we show that any solution of (ID) converges in average towards a feasible point of
(P), given that the potential function ‖h( · )‖2

Y admits a strong minimum with zero
value.

Whenever the Hessian operator ∇2f( · ) is elliptic, we infer that energy is strictly
dissipated as the solutions of (ID) evolve. In this case, it is proven that the en-
ergy function converges towards its infimal value. More precisely, we show that the
convergence obeys, as t → +∞, the estimate

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y = o

(1

t

)

.

This result is in line with the worst-case estimate known for the “heavy ball with
friction” differential system; see, e.g., Attouch and Cabot [6]. Under the ellipticity
condition on ∇2f( · ), we also prove that any solution of (ID) converges towards a
feasible point of (P), if one exists. In this case, the limit of a solution of (ID) is
characterized as a “Df -like projection” of its initial data onto the set of feasible points
of (P); here, Df refers to the Bregman distance associated with f . More precisely,
given a solution x : [0,+∞) → X of (ID) with initial data (x0, v0) ∈ X ×X , we show
that x(t) converges, as t → +∞, to the unique element x̄ ∈ X satisfying

Df (x̄, x0) − 〈x̄, v0〉X = inf {Df(x, x0) − 〈x, v0〉X | h(x) = 0Y }.
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As an immediate consequence, we observe that whenever the solution is issued from
(x0,−∇f(x0)) ∈ X × X , the convergence is towards the unique element x̄ ∈ X
verifying

f(x̄) = inf {f(x) | h(x) = 0Y },
that is, towards the unique minimizer of the linearly constrained convex minimization
problem (P). Finally, we show that the solutions of (ID) decay asymptotically at an
exponential rate provided that f satisfies

2Df(y, x) − 〈∇2f(x)(x − y), x− y〉X ≥ 0, ∀x, y ∈ X.

We note that the above condition essentially restricts f to be quadratic as it requires
the graph of f to lie above all its second-order approximations.

Organization of the paper. We begin our discussion with a basic result on
the existence and uniqueness of the solutions of (ID), and further characterize their
asymptotic properties based on the decay information of the energy function. In sec-
tion 3, we then investigate the asymptotic behavior of the solutions of (ID) under
some more stringent assumptions on the problem data. In section 4, we establish
the convergence of the solutions of (ID) and eventually characterize their minimizing
properties with respect to the convex minimization problem (P). In section 5, we
further derive asymptotic estimates on the convergence rate of the solutions of (ID).
In section 6, we show that the inertial dynamics (ID) admit an equivalent first-order
representation in terms of the Arrow–Hurwicz differential system (AH). Moreover,
we introduce an augmented variant of the inertial dynamics (ID) to allow for a relax-
ation of the stringent assumptions imposed on the problem data. Finally, section 7 is
devoted to numerical experiments.

2. General properties. Let X,Y be real Hilbert spaces endowed with inner
products 〈 · , · 〉X , 〈 · , · 〉Y and induced norms ‖ · ‖X , ‖ · ‖Y . Throughout the work, we
presuppose that

(A1) f : X → R is convex and twice continuously differentiable;
(A2) ∇2f : X → B(X) is Lipschitz continuous on bounded sets;
(A3) A ∈ B(X,Y ), b ∈ Y and h(x) = Ax− b, x ∈ X .

Given the above assumptions, consider the second-order differential system

(ID) ẍ+ ∇2f(x)ẋ+ ∇‖h(x)‖2
Y /2 = 0X

with initial data (x0, v0) ∈ X ×X .
Let us begin our discussion with a basic result on the existence and uniqueness

of the solutions of (ID). Recall that x : I → X is a (classical) solution of (ID) on an
interval I ⊂ R, 0 ∈ I, if x ∈ C2(I;X) and x satisfies (ID) on I with (x(0), ẋ(0)) =
(x0, v0).

Theorem 2.1. For any (x0, v0) ∈ X × X there exists a unique solution x :
[0,+∞) → X of (ID). Moreover,

(i) t 7→ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y is non-increasing on [0,+∞) and

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y ≤ ‖v0‖2
X + ‖h(x0)‖2

Y , ∀t ≥ 0;

(ii) limt→+∞‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y exists;
(iii) it holds that

∫ ∞

0

〈∇2f(x(τ))ẋ(τ), ẋ(τ)〉X dτ < +∞;
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(iv) ẋ ∈ L∞([0,+∞);X) and h(x) ∈ L∞([0,+∞);Y ).

Proof. By the Cauchy–Lipschitz theorem (see, e.g., [21]), for any (x0, v0) ∈ X×X
there exists t̃ > 0 such that (ID) admits a unique solution x : [0, t̃] → X . Let

t+ = sup {t̃ > 0 | ∃! solution of (ID) on [0, t̃]}

and suppose, contrary to our claim, that t+ < +∞. For any t ∈ [0, t+), taking the
inner product with ẋ(t) in (ID) yields

〈ẍ(t) + ∇‖h(x(t))‖2
Y /2, ẋ(t)〉X + 〈∇2f(x(t))ẋ(t), ẋ(t)〉X = 0.

Using the chain rule, we obtain

(2.1)
1

2

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y

)

+ 〈∇2f(x(t))ẋ(t), ẋ(t)〉X = 0.

Since ∇2f( · ) is positive (f being convex), it follows that t 7→ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y

is non-increasing on [0, t+) and thus, for any t ∈ [0, t+),

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y ≤ ‖v0‖2
X + ‖h(x0)‖2

Y .

Clearly,
sup

t∈[0,t+)

‖ẋ(t)‖X < +∞ and sup
t∈[0,t+)

‖h(x(t))‖Y < +∞.

Hence, for any 0 ≤ s ≤ t < t+, we deduce

‖x(t) − x(s)‖X ≤
∫ t

s

‖ẋ(τ)‖X dτ ≤ sup
τ∈[s,t]

‖ẋ(τ)‖X(t− s) ≤ sup
τ∈[0,t+)

‖ẋ(τ)‖X(t− s),

so that x : [0, t+) → X admits a unique continuous extension to [0, t+], that is,
limt→t+

x(t) exists. Consequently, x and ẋ are bounded on [0, t+). Moreover, in view
of the Lipschitz continuity of ∇2f and the boundedness of ∇‖h(x)‖2

Y /2 on [0, t+),
we deduce from (ID) that ẍ remains bounded on [0, t+) as well. Hence, for any
0 ≤ s ≤ t < t+, we have

‖ẋ(t) − ẋ(s)‖X ≤
∫ t

s

‖ẍ(τ)‖X dτ ≤ sup
τ∈[0,t+)

‖ẍ(τ)‖X(t− s),

so that limt→t+
ẋ(t) exists. Applying the Cauchy–Lipschitz theorem again with ini-

tial data (limt→t+
x(t), limt→t+

ẋ(t)) at t+ < +∞, we can extend the solution to an
interval strictly larger than [0, t+), a contradiction.

The previous theorem identifies the mapping

t 7−→ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y

as a Lyapunov function whose decay property will be crucial for the analysis of the
asymptotic behavior of the solutions of (ID). Assuming, moreover, the boundedness
of the solutions of (ID), we have the following additional properties.

Corollary 2.2. Let x : [0,+∞) → X be a bounded solution of (ID). Then,
(i) ẍ,∇2f(x)ẋ,∇‖h(x)‖2

Y /2 ∈ L∞([0,+∞);X);
(ii) limt→+∞〈∇2f(x(t))ẋ(t), ẋ(t)〉X = 0.
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Proof. (i) By Theorem 2.1(iv), we have both ẋ ∈ L∞([0,+∞);X) as well as
h(x) ∈ L∞([0,+∞);Y ). Consequently, ∇‖h(x)‖2

Y /2 belongs to L∞([0,+∞);X).
Since x is bounded on [0,+∞), it follows from the Lipschitz continuity of ∇2f and
the boundedness of ẋ on [0,+∞) that ∇2f(x)ẋ remains bounded on [0,+∞) as well;
and so does ẍ in view of (ID).

(ii) By Theorem 2.1(iii), we know that 〈∇2f(x)ẋ, ẋ〉X ∈ L1([0,+∞);R). Using
ẍ, ẋ, x ∈ L∞([0,+∞);X) and the fact that ∇2f is Lipschitz continuous on bounded
sets, we obtain 〈∇2f(x)ẋ, ẋ〉X ∈ Lip([0,+∞);R). Observing that we have both

〈∇2f(x)ẋ, ẋ〉X ∈ L1([0,+∞);R) and 〈∇2f(x)ẋ, ẋ〉X ∈ Lip([0,+∞);R),

it follows from a classical result that limt→+∞〈∇2f(x(t))ẋ(t), ẋ(t)〉X = 0.

Remark 2.3. We note that the solutions of (ID) remain bounded, e.g., in the case
when ‖h( · )‖2

Y admits a strong minimum at x̄ ∈ X , i.e.,

∃β > 0 ∀x ∈ X ‖h(x)‖2
Y ≥ inf ‖h( · )‖2

Y + β‖x− x̄‖2
X .

Indeed, it suffices to observe from Theorem 2.1(i) that for any t ≥ 0,

‖h(x(t))‖2
Y ≤ ‖v0‖2

X + ‖h(x0)‖2
Y .

This majorization and the fact that ‖h( · )‖2
Y admits a strong minimum at x̄ ∈ X

clearly imply that x remains bounded on [0,+∞).

The following proposition characterizes the limit of a convergent solution of (ID)
as a minimizer of ‖h( · )‖2

Y . The technique we use to prove this fact is adapted from
the corresponding literature on a second-order differential system with asymptotically
small dissipation; cf. Cabot, Engler, and Gadat [17].

Proposition 2.4. Let x : [0,+∞) → X be a solution of (ID) and let x̄ ∈ X be
such that x(t) → x̄ strongly in X as t → +∞. Then,

(i) it holds that

lim
t→+∞

ẍ(t) = lim
t→+∞

ẋ(t) = 0X and ∇‖h(x̄)‖2
Y /2 = 0X ;

(ii) limt→+∞‖h(x(t))‖2
Y = inf ‖h( · )‖2

Y .

Proof. (i) Let x̄ ∈ X be such that x(t) → x̄ strongly in X as t → +∞. Con-
sequently, x is bounded on [0,+∞) and the assertions of Corollary 2.2 hold. Hence,
there exists C ≥ 0 such that ‖ẍ(t)‖X ≤ C for any t ≥ 0. Applying Landau’s inequality
to t 7→ x(t) − x̄ yields for any t ≥ 0,

sup
τ≥t

‖ẋ(τ)‖X ≤ 2
√

sup
τ≥t

‖x(τ) − x̄‖X sup
τ≥t

‖ẍ(τ)‖X ≤ 2
√
C

√

sup
τ≥t

‖x(τ) − x̄‖X .

By taking the limit as t → +∞, it follows that limt→+∞ ẋ(t) = 0X . Moreover, using
the fact that ∇‖h(x(t))‖2

Y /2 → ∇‖h(x̄)‖2
Y /2 strongly in X as t → +∞, we deduce

that limt→+∞ ẍ(t) = −∇‖h(x̄)‖2
Y /2 in view of (ID) and the Lipschitz continuity of

∇2f . Assuming now that ∇‖h(x̄)‖2
Y /2 6= 0X , an immediate integration shows that

ẋ(t) behaves equivalent to −t∇‖h(x̄)‖2
Y /2 as t → +∞, a contradiction. Consequently,

∇‖h(x̄)‖2
Y /2 = 0X and thus, limt→+∞ ẍ(t) = 0X .

(ii) This is an immediate consequence of the convexity of ‖h( · )‖2
Y /2. Indeed, for

any η ∈ X , we have

‖h(η)‖2
Y /2 ≥ ‖h(x(t))‖2

Y /2 + 〈∇‖h(x(t))‖2
Y /2, x(t) − η〉X .
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Since x(t) → x̄ and ∇‖h(x(t))‖2
Y /2 → 0X strongly in X as t → +∞, it follows that

‖h(η)‖2
Y ≥ lim

t→+∞
‖h(x(t))‖2

Y = ‖h(x̄)‖2
Y .

This inequality being true for any η ∈ X , we deduce

lim
t→+∞

‖h(x(t))‖2
Y = inf ‖h( · )‖2

Y = ‖h(x̄)‖2
Y ,

concluding the result.

As a direct consequence of the previous result, we observe that any non-stationary
solution of (ID) fails to converge under the condition

ẋ(t) ∈ ker ∇2f(x(t)), ∀t ≥ 0.

The assertion comes with no surprise, since under the above condition, the solutions
of (ID) evolve solely in “regions of vanishing damping”; cf. the extreme case when
∇2f( · ) is identically zero. For simplicity of notation, we now set S := {x ∈ X |
∇‖h(x)‖2

Y /2 = 0X}.

Corollary 2.5. Let x : [0,+∞) → X be a solution of (ID) with initial data
(x0, v0) ∈ X ×X and suppose that

ẋ(t) ∈ ker ∇2f(x(t)), ∀t ≥ 0.

If (x0, v0) /∈ S × {0X}, then x(t) fails to converge as t → +∞.

Proof. Let (x0, v0) /∈ S × {0X} so that ‖v0‖2
X + ‖h(x0)‖2

Y − inf ‖h( · )‖2
Y > 0. For

any t ≥ 0, integration of (2.1) over [0, t] yields

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y + 2

∫ t

0

〈∇2f(x(τ))ẋ(τ), ẋ(τ)〉X dτ

= ‖v0‖2
X + ‖h(x0)‖2

Y − inf ‖h( · )‖2
Y .

Owing to the fact that, for any t ≥ 0,

ẋ(t) ∈ ker ∇2f(x(t)),

by taking the limit in the above equality as t → +∞, it follows

lim
t→+∞

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

= ‖v0‖2
X + ‖h(x0)‖2

Y − inf ‖h( · )‖2
Y > 0.

(2.2)

Suppose now, contrary to our claim, that there exists x̄ ∈ X such that x(t) → x̄
strongly in X as t → +∞. By Proposition 2.4, we know that limt→+∞ ẋ(t) = 0X and
limt→+∞‖h(x(t))‖2

Y = inf ‖h( · )‖2
Y . Consequently,

lim
t→+∞

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y = 0,

which contradicts (2.2).

Let us now complement the previous discussion with a basic result on the ergodic
convergence of the solutions of (ID). To this end, consider the Cesàro average σ :
(0,+∞) → X of a solution x : [0,+∞) → X of (ID) defined by

σ(t) =
1

t

∫ t

0

x(τ) dτ.



SECOND-ORDER DYNAMICS WITH HESSIAN-DRIVEN DAMPING 9

The following result states that the Cesàro average σ(t) of a solution of (ID) converges,
as t → +∞, whenever ‖h( · )‖2

Y admits a strong minimum; cf. Remark 2.3. Clearly,
the latter condition implies that S is non-empty and reduced to a single element.

Proposition 2.6. Let σ : (0,+∞) → X be the Cesàro average of a solution
of (ID) and suppose that ‖h( · )‖2

Y admits a strong minimum at x̄ ∈ X. Then, as
t → +∞, it holds that

‖σ(t) − x̄‖X = O
(1

t

)

.

Consequently, σ(t) converges strongly, as t → +∞, to the unique element x̄ ∈ S.

Proof. Since ‖h( · )‖2
Y admits a strong minimum at x̄ ∈ S, we have for any t > 0,

β‖σ(t) − x̄‖2
X ≤ ‖h(σ(t))‖2

Y − inf ‖h( · )‖2
Y .

Moreover, using the fact that ∇‖h(x̄)‖2
Y /2 = 0X and the Cauchy–Schwarz inequality,

we obtain

‖h(σ(t))‖2
Y − inf ‖h( · )‖2

Y = 〈∇‖h(σ(t))‖2
Y /2, σ(t) − x̄〉X

≤ ‖∇‖h(σ(t))‖2
Y /2‖X ‖σ(t) − x̄‖X .

Combining the above inequalities yields

β‖σ(t) − x̄‖X ≤ ‖∇‖h(σ(t))‖2
Y /2‖X .

Equivalently,

t‖σ(t) − x̄‖X ≤ 1

β

∥

∥

∥

∫ t

0

∇‖h(x(τ))‖2
Y /2 dτ

∥

∥

∥

X
,

which, in view of (ID) and subsequent integration over [0, t], reads

t‖σ(t) − x̄‖X ≤ 1

β
‖ẋ(t) − v0 + ∇f(x(t)) − ∇f(x0)‖X .

By Theorem 2.1(iv), we know that ẋ is bounded on [0,+∞). Since x is bounded on
[0,+∞), cf. Remark 2.3, it follows from the Lipschitz continuity of ∇2f that ∇f(x)
remains bounded on [0,+∞). Hence, there exists C ≥ 0 such that for any t > 0,

t‖σ(t) − x̄‖X ≤ C.

Passing to the upper limit as t → +∞ then yields

lim sup
t→+∞

t‖σ(t) − x̄‖X < +∞,

concluding the proof.

As an immediate consequence of the previous result, we observe that whenever
‖h( · )‖2

Y admits a strong minimum at x̄ ∈ X with zero value, i.e.,

∃β > 0 ∀x ∈ X ‖h(x)‖2
Y ≥ β‖x− x̄‖2

X ,

the Cesàro average σ(t) of a solution of (ID) converges, as t → +∞, to the unique
feasible (and thus optimal) point x̄ ∈ S of the convex minimization problem (P).
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3. The case of an elliptic Hessian. In this section, we investigate the asymp-
totic properties of the solutions of (ID) under some more stringent assumptions on
the problem data. We take for granted the existence and uniqueness of the solutions
of (ID) and suppose henceforth that

(A4) ∇2f( · ) : X → X is α-elliptic, i.e.,

∃α > 0 ∀x, y ∈ X 〈∇2f(x)y, y〉X ≥ α‖y‖2
X ,

(equivalently, f : X → R is α-strongly convex);
(A5) S = {x ∈ X | ∇‖h(x)‖2

Y /2 = 0X} is non-empty.
We remark that the latter assumption is verified in each of the following cases: (i)
If ranA is closed, then S = ξ + kerA with ξ ∈ X such that Aξ = projran A b. (ii) If
b ∈ ranA, then S = ξ + kerA with ξ ∈ X satisfying Aξ = b.

In our forthcoming study on (ID), we utilize the notion of the Bregman distance
relative to the Legendre-type function f . Recall that the Bregman distance associated
with f , denoted by Df : X ×X → R, is defined by

Df (y, x) = f(y) − f(x) − 〈∇f(x), y − x〉X .

Since f is α-strongly convex (∇2f( · ) being α-elliptic), it provides a natural measure
of proximity in the sense that, for any x, y ∈ X , we have Df (y, x) ≥ α‖x − y‖2

X/2
and thus, Df (y, x) = 0 if and only if x = y.

The following theorem characterizes the asymptotic properties of the solutions of
(ID) and further provides an estimate on the decay of the mapping

t 7−→ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y /2.

This decay property will be crucial for the subsequent convergence analysis on the
solutions of (ID).

Theorem 3.1. Let ∇2f( · ) be α-elliptic, and let S be non-empty. Then, any so-
lution x : [0,+∞) → X of (ID) is bounded on [0,+∞). Moreover,

(i) ẍ, ẋ,∇‖h(x)‖2
Y /2 ∈ L2([0,+∞);X);

(ii) it holds that

lim
t→+∞

ẍ(t) = lim
t→+∞

ẋ(t) = lim
t→+∞

∇‖h(x(t))‖2
Y /2 = 0X ;

(iii) limt→+∞‖h(x(t))‖2
Y = inf ‖h( · )‖2

Y ;
(iv) it holds that

∫ ∞

0

‖ẋ(τ)‖2
X + ‖h(x(τ))‖2

Y − inf ‖h( · )‖2
Y dτ < +∞;

(v) limt→+∞ t
(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

= 0 and thus, as t → +∞,

‖ẋ(t)‖2
X = o

(1

t

)

and ‖h(x(t))‖2
Y − inf ‖h( · )‖2

Y = o
(1

t

)

.

Proof. Let ξ ∈ S and define φ : [0,+∞) → R by φ(t) = ‖x(t) − ξ‖2
X/2 such that

φ̇(t) = 〈x(t) − ξ, ẋ(t)〉X and φ̈(t) = 〈x(t) − ξ, ẍ(t)〉X + ‖ẋ(t)‖2
X . Using (ID) and the

fact that ∇‖h(ξ)‖2
Y /2 = 0X , we have for any t ≥ 0,

φ̈(t) +
d

dt
Df (ξ, x(t)) + 〈∇‖h(x(t))‖2

Y /2 − ∇‖h(ξ)‖2
Y /2, x(t) − ξ〉X = ‖ẋ(t)‖2

X .
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Since ∇2f( · ) is α-elliptic, we observe from (2.1) that

1

2

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+ α‖ẋ(t)‖2
X ≤ 0,

which, together with the above equation, gives

φ̈(t) +
d

dt
Df (ξ, x(t)) +

1

α

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+ ‖ẋ(t)‖2
X + 〈∇‖h(x(t))‖2

Y /2 − ∇‖h(ξ)‖2
Y /2, x(t) − ξ〉X ≤ 0.

(3.1)

Using this inequality and the monotonicity of ∇‖h( · )‖2
Y /2, i.e.,

〈∇‖h(x(t))‖2
Y /2 − ∇‖h(ξ)‖2

Y /2, x(t) − ξ〉X ≥ 0,

we deduce that

(3.2) t 7−→ φ̇(t) +Df (ξ, x(t)) +
1

α

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

is non-increasing on [0,+∞). Hence, there exists C ≥ 0 such that for any t ≥ 0,

φ̇(t) +Df(ξ, x(t)) +
1

α

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

≤ C.

Using successively Df (ξ, x(t)) ≥ αφ(t) and the fact that

αφ(t) − αφ(0) = α

∫ t

0

φ̇(τ) dτ,

we obtain

φ̇(t) + α

∫ t

0

φ̇(τ) dτ ≤ C − αφ(0).

Multiplying the previous inequality by eαt and subsequently integrating over [0, t]
shows that there exists C̃ > C such that

φ(t) ≤ C̃/α,

which clearly implies that x remains bounded on [0,+∞).
(i) Recall the definition of h in terms of A ∈ B(X,Y ) and b ∈ Y (cf. assumption

(A3)), and let ‖A‖ denote the operator norm of A. Since ∇‖h( · )‖2
Y /2 is ‖A‖2-

Lipschitz continuous, it follows by the Baillon–Haddad theorem [9] that ∇‖h( · )‖2
Y /2

is 1/‖A‖2-cocoercive, i.e.,

〈∇‖h(x(t))‖2
Y /2−∇‖h(ξ)‖2

Y /2, x(t)− ξ〉X ≥ 1

‖A‖2
‖∇‖h(x(t))‖2

Y /2−∇‖h(ξ)‖2
Y /2‖2

X .

From (3.1) and the fact that ∇‖h(ξ)‖2
Y /2 = 0X , we then obtain

φ̈(t) +
d

dt
Df (ξ, x(t)) +

1

α

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+ ‖ẋ(t)‖2
X +

1

‖A‖2
‖∇‖h(x(t))‖2

Y /2‖2
X ≤ 0.
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Integration over [0, t] yields

φ̇(t) +Df (ξ, x(t)) +
1

α

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+

∫ t

0

‖ẋ(τ)‖2
X dτ +

1

‖A‖2

∫ t

0

‖∇‖h(x(τ))‖2
Y /2‖2

X dτ ≤ C.

Using again Df(ξ, x(t)) ≥ αφ(t) and the fact that x and ẋ are bounded on [0,+∞),
we observe that φ̇ remains bounded on [0,+∞) as well. Hence,

∫ ∞

0

‖ẋ(τ)‖2
X dτ < +∞ and

∫ ∞

0

‖∇‖h(x(τ))‖2
Y /2‖2

X dτ < +∞.

In view of (ID), the latter implies that ẍ+ ∇2f(x)ẋ ∈ L2([0,+∞);X). Owing to the
Lipschitz continuity of ∇2f , it follows that ẍ = (ẍ+ ∇2f(x)ẋ) − ∇2f(x)ẋ belongs to
L2([0,+∞);X) as well.

(ii) Since x is bounded on [0,+∞), the assertions of Corollary 2.2 hold. Hence,
we have both

ẋ ∈ L2([0,+∞);X) and ẍ ∈ L∞([0,+∞);X),

which, according to a classical result, imply limt→+∞ ẋ(t) = 0X . Similarly, we have

∇‖h(x)‖2
Y /2 ∈ L2([0,+∞);X) and ∇‖h(x)‖2

Y /2 ∈ Lip([0,+∞);X),

so that limt→+∞ ∇‖h(x(t))‖2
Y /2 = 0X . Using (ID) and the Lipschitz continuity of

∇2f , we conclude that limt→+∞ ẍ(t) = 0X .
(iii) This again follows immediately from the convexity of ‖h( · )‖2

Y /2; cf. Propo-
sition 2.4(ii). Recall that for any η ∈ X , we have

‖h(η)‖2
Y /2 ≥ ‖h(x(t))‖2

Y /2 + 〈∇‖h(x(t))‖2
Y /2, x(t) − η〉X .

Since x is bounded on [0,+∞) and ∇‖h(x(t))‖2
Y /2 → 0X strongly in X as t → +∞,

it follows

‖h(η)‖2
Y ≥ lim sup

t→+∞
‖h(x(t))‖2

Y ≥ lim inf
t→+∞

‖h(x(t))‖2
Y ≥ inf ‖h( · )‖2

Y .

The above inequalities being true for any η ∈ X , we obtain the result.
(iv) From (3.1) and the fact that for any t ≥ 0,

〈∇‖h(x(t))‖2
Y /2 − ∇‖h(ξ)‖2

Y /2, x(t) − ξ〉X = ‖h(x(t))‖2
Y − inf ‖h( · )‖2

Y ,

we obtain

φ̈(t) +
d

dt
Df (ξ, x(t)) +

1

α

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y ≤ 0.

(3.3)

Using a similar reasoning as above, there exists C ≥ 0 such that for any t ≥ 0,

φ̇(t) + α

∫ t

0

φ̇(τ) dτ +
1

α

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+

∫ t

0

‖ẋ(τ)‖2
X + ‖h(x(τ))‖2

Y − inf ‖h( · )‖2
Y dτ ≤ C − αφ(0).
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Successively multiplying the above inequality by eαt and integrating over [0, t] yields
the existence of C̃ > C such that

φ(t) +
1

α

∫ t

0

‖ẋ(τ)‖2
X + ‖h(x(τ))‖2

Y − inf ‖h( · )‖2
Y dτ ≤ C̃/α,

which implies that ‖ẋ‖2
X + ‖h(x)‖2

Y − inf ‖h( · )‖2
Y ∈ L1([0,+∞);R).

(v) By Theorem 2.1(i), the mapping t 7→ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y is non-increasing
on [0,+∞) and thus, for any t ≥ 0,

∫ t

t/2

‖ẋ(τ)‖2
X +‖h(x(τ))‖2

Y − inf ‖h( · )‖2
Y dτ ≥ t

2

(

‖ẋ(t)‖2
X +‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

.

Since ‖ẋ‖2
X + ‖h(x)‖2

Y − inf ‖h( · )‖2
Y belongs to L1([0,+∞);R), we observe that the

above integral vanishes as t → +∞. Consequently,

lim
t→+∞

t
(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

= 0.

The remaining assertions now follow immediately.

As an immediate consequence of Theorem 3.1(ii), we recover the fact that the
limit of a convergent solution of (ID) necessarily belongs to S; cf. Proposition 2.4(i).

Corollary 3.2. Under the hypotheses of Theorem 3.1, if there exists x̄ ∈ X such
that x(t) → x̄ strongly in X as t → +∞, then x̄ ∈ S.

Proof. Since ∇‖h( · )‖2
Y /2 is continuous and ∇‖h(x(t))‖2

Y /2 → 0X strongly in X
as t → +∞, the limit of x(t) as t → +∞ clearly belongs to S.

Let us now extend the previous discussion with a result on the convergence of the
solutions of (ID) in the case when ‖h( · )‖2

Y admits a strong minimum. Recall that
‖h( · )‖2

Y admits a strong minimum at x̄ ∈ X if

∃β > 0 ∀x ∈ X ‖h(x)‖2
Y ≥ inf ‖h( · )‖2

Y + β‖x− x̄‖2
X .

In this case, the minimizing property in Theorem 3.1(iii) clearly implies that any
solution x(t) of (ID) converges, as t → +∞, to the unique element x̄ ∈ S. The
following proposition further provides an asymptotic estimate on the decay of the
solutions of (ID) based on the decay property stated in Theorem 3.1(v).

Proposition 3.3. Let ∇2f( · ) be α-elliptic and suppose that ‖h( · )‖2
Y admits a

strong minimum at x̄ ∈ X. Let x : [0,+∞) → X be a solution of (ID). Then, as
t → +∞, it holds that

‖ẋ(t)‖2
X = o

(1

t

)

and ‖x(t) − x̄‖2
X = o

(1

t

)

.

Consequently, x(t) converges strongly, as t → +∞, to the unique element x̄ ∈ S.

Proof. Since ‖h( · )‖2
Y admits a strong minimum at x̄ ∈ S, we have for any t ≥ 0,

‖ẋ(t)‖2
X + β‖x(t) − x̄‖2

X ≤ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y .

Multiplying the inequality by t and using that limt→+∞ t
(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y −
inf ‖h( · )‖2

Y

)

= 0, cf. Theorem 3.1(v), we deduce

lim
t→+∞

t
(

‖ẋ(t)‖2
X + β‖x(t) − x̄‖2

X

)

= 0.

The remaining estimates are now readily deduced.
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Remark 3.4. We note that the above decay rate estimates remain valid even in
the case when ‖h( · )‖2

Y admits a strong minimum with respect to the set S, i.e.,

∃β > 0 ∀x ∈ X ‖h(x)‖2
Y ≥ inf‖h( · )‖2

Y + β dist(x, S)2.

Indeed, by following the above reasoning, we observe that any solution x(t) of (ID)
obeys, as t → +∞, the estimates

‖ẋ(t)‖2
X = o

(1

t

)

and dist(x(t), S)2 = o
(1

t

)

.

In this case, however, we can not deduce the convergence of the solutions of (ID); we
refer to section 4 for the respective results corresponding to the case when ‖h( · )‖2

Y

admits multiple minima.

Finally, we observe from Proposition 3.3 that whenever ‖h( · )‖2
Y admits a strong

minimum at x̄ ∈ X with zero value, i.e.,

∃β > 0 ∀x ∈ X ‖h(x)‖2
Y ≥ β‖x− x̄‖2

X ,

any solution x(t) of (ID) converges, as t → +∞, to the unique feasible (and thus
optimal) point x̄ ∈ S of the convex minimization problem (P).

4. Asymptotic analysis. In this section, we investigate the asymptotic prop-
erties of the solutions of (ID) in the case when ‖h( · )‖2

Y admits multiple minima.
We focus our attention on the convergence of the solutions of (ID) in both the weak
and the strong senses, and eventually characterize their minimizing properties with
respect to the convex minimization problem (P).

4.1. Weak and strong convergence. Let us begin our discussion with a result
on the weak convergence of the solutions of (ID). The argument we use to prove the
following theorem relies essentially on Opial-like techniques; cf. Opial [24].

Theorem 4.1. Let ∇2f( · ) be α-elliptic, let S be non-empty and let x : [0,+∞) →
X be a solution of (ID). Then, the following assertions hold:

(i) ∀ξ ∈ S, limt→+∞ Df (ξ, x(t)) exists;
(ii) ∀tn → +∞ with x(tn) ⇀ x̄ weakly in X, it holds that x̄ ∈ S.

Assuming moreover that ∇f is weakly sequentially continuous, then there exists x̄ ∈ S
such that x(t) ⇀ x̄ weakly in X as t → +∞.

Proof. (i) Let ξ ∈ S and consider again the mapping φ : [0,+∞) → R defined by
φ(t) = ‖x(t) − ξ‖2

X/2. Recall from (3.2) that

t 7−→ φ̇(t) +Df(ξ, x(t)) +
1

α

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

is non-increasing on [0,+∞). Hence, it admits a limit as t → +∞. By Theorem 2.1(ii),
we know that limt→+∞‖ẋ(t)‖2

X + ‖h(x(t))‖2
Y exists. Moreover, by Theorem 3.1, x is

bounded on [0,+∞) and limt→+∞ ẋ(t) = 0X . Consequently, limt→+∞ φ̇(t) = 0 and
thus, limt→+∞ Df (ξ, x(t)) exists.

(ii) Let x̄ ∈ X and let tn → +∞ be a sequence such that x(tn) ⇀ x̄ weakly in X .
By Theorem 3.1(iii), we have limn→+∞‖h(x(tn))‖2

Y = inf ‖h( · )‖2
Y . Since ‖h( · )‖2

Y is
weakly lower-semicontinuous (‖h( · )‖2

Y being convex and continuous), it follows that

inf ‖h( · )‖2
Y = lim

n→+∞
‖h(x(tn))‖2

Y = lim inf
n→+∞

‖h(x(tn))‖2
Y ≥ ‖h(x̄)‖2

Y ,
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which implies that x̄ ∈ S.
Let us assume now that ∇f is weakly sequentially continuous. To establish the

weak convergence of x(t) as t → +∞, it suffices to show that it admits a unique
weak sequential cluster point. Let x(tn) ⇀ ȳ and x(sn) ⇀ z̄ weakly in X for some
sequences tn, sn → +∞. Using (ii), we observe that ȳ and z̄ belong to S. Moreover,
using (i), limt→+∞ Df (ȳ, x(t)) and limt→+∞ Df (z̄, x(t)) exist. Hence,

lim
t→+∞

Df(ȳ, x(t)) −Df (z̄, x(t)) exists.

Replacing t successively by tn and sn gives

lim
n→+∞

Df (ȳ, x(tn)) −Df (z̄, x(tn)) = lim
n→+∞

Df(ȳ, x(sn)) −Df (z̄, x(sn)).

Since ∇f is weakly sequentially continuous, we deduce

lim
n→+∞

Df (ȳ, x(tn)) −Df(z̄, x(tn)) = −Df(z̄, ȳ), and

lim
n→+∞

Df (ȳ, x(sn)) −Df(z̄, x(sn)) = Df (ȳ, z̄).

Using that f is α-strongly convex, it follows

α‖ȳ − z̄‖2
X/2 ≤ Df (ȳ, z̄) = −Df (z̄, ȳ) ≤ −α‖ȳ − z̄‖2

X/2

and thus, ȳ = z̄.

The previous result establishes the weak convergence of the solutions of (ID) under
the additional assumption that ∇f : X → X is weakly sequentially continuous. This
condition comes with no surprise since, in general, nonlinear sequentially continuous
mappings are not weakly sequentially continuous; cf. Brézis [15]. We also remark
that a similar result has been established by Bauschke, Borwein, and Combettes [10,
Condition 4.3 and Theorem 4.11] based on the notion of Bregman monotonicity.

Remark 4.2. We note that ∇f : X → X is weakly sequentially continuous, e.g., in
the case when X is finite-dimensional or whenever ∇f is a continuous affine operator;
cf. Bauschke and Combettes [11, Lemma 2.41].

Let us now turn our attention to the question on whether the solutions of (ID)
are strongly convergent. The following theorem gives an affirmative answer to this
question by exploiting the symmetry property of ‖h( · )‖2

Y relative to the set S, i.e.,
for any fixed ξ ∈ S, it holds that

‖h(x)‖2
Y = ‖h(ξ − x+ ξ)‖2

Y , ∀x ∈ X.

The above argument was in essence originated by Bruck [16] for the “steepest descent
method”; see also Alvarez [1] for an extension to a second-order differential system.

Theorem 4.3. Let ∇2f( · ) be α-elliptic, let S be non-empty and let x : [0,+∞) →
X be a solution of (ID). Then, there exists x̄ ∈ S such that x(t) → x̄ strongly in X
as t → +∞.

Proof. Let ξ ∈ S, let t̃ > 0, and define ψ : [0, t̃] → R by ψ(t) = ‖x(t) − ξ + x(t̃) −
ξ‖2

X/2 such that ψ̇(t) = 〈x(t) − ξ + x(t̃) − ξ, ẋ(t)〉X and ψ̈(t) = 〈x(t) − ξ + x(t̃) −
ξ, ẍ(t)〉X + ‖ẋ(t)‖2

X . Using (ID), we have for any t ∈ [0, t̃],

ψ̈(t) +
d

dt

(

2Df(ξ, x(t)) − 2Df (ξ, x(t̃)) −Df(x(t̃), x(t))
)

+ 〈∇‖h(x(t))‖2
Y /2, x(t) − ξ + x(t̃) − ξ〉X = ‖ẋ(t)‖2

X .
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Since ∇2f( · ) is α-elliptic, we observe again from (2.1) that

1

2

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+ α‖ẋ(t)‖2
X ≤ 0.

This fact, together with the above equation, yields

ψ̈(t) +
d

dt

(

2Df(ξ, x(t)) − 2Df (ξ, x(t̃)) −Df (x(t̃), x(t))
)

+
1

α

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+ ‖ẋ(t)‖2
X + 〈∇‖h(x(t))‖2

Y /2, x(t) − ξ + x(t̃) − ξ〉X ≤ 0.

Using this inequality and the convexity of ‖h( · )‖2
Y /2, i.e.,

‖h(x(t))‖2
Y /2 − ‖h(ξ − x(t̃) + ξ)‖2

Y /2 ≤ 〈∇‖h(x(t))‖2
Y /2, x(t) − ξ + x(t̃) − ξ〉X ,

we obtain

ψ̈(t) +
d

dt

(

2Df(ξ, x(t)) − 2Df (ξ, x(t̃)) −Df (x(t̃), x(t))
)

+
1

α

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

+ ‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y /2 − ‖h(ξ − x(t̃) + ξ)‖2
Y /2 ≤ 0.

Moreover, using successively that t 7→ ‖ẋ(t)‖2
X/2 + ‖h(x(t))‖2

Y /2 is non-increasing on
[0, t̃], cf. Theorem 2.1(i), and the fact that ‖h( · )‖2

Y /2 satisfies the symmetry property
relative to S, we have for any t ∈ [0, t̃],

‖ẋ(t)‖2
X/2 + ‖h(x(t))‖2

Y /2 ≥ ‖ẋ(t̃)‖2
X/2 + ‖h(x(t̃))‖2

Y /2

= ‖ẋ(t̃)‖2
X/2 + ‖h(ξ − x(t̃) + ξ)‖2

Y /2.

Consequently,

ψ̈(t) +
d

dt

(

2Df(ξ, x(t)) − 2Df (ξ, x(t̃)) −Df (x(t̃), x(t))
)

+
1

α

d

dt

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y − inf ‖h( · )‖2
Y

)

≤ 0.

Integration over [t, t̃] yields

ψ̇(t̃) − ψ̇(t) −
(

2Df(ξ, x(t)) − 2Df(ξ, x(t̃)) −Df(x(t̃), x(t))
)

+
1

α

(

‖ẋ(t̃)‖2
X + ‖h(x(t̃))‖2

Y

)

− 1

α

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y

)

≤ 0.

Since f is α-strongly convex, we have Df (x(t̃), x(t)) ≥ α‖x(t) − x(t̃)‖2
X/2 such that

for any t ∈ [0, t̃],

α

2
‖x(t) − x(t̃)‖2

X ≤ ψ̇(t) − ψ̇(t̃) + 2Df(ξ, x(t)) − 2Df(ξ, x(t̃))

+
1

α

(

‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y

)

− 1

α

(

‖ẋ(t̃)‖2
X + ‖h(x(t̃))‖2

Y

)

.

By Theorem 2.1(ii), we know that limt→+∞‖ẋ(t)‖2
X + ‖h(x(t))‖2

Y exists. Moreover,
Theorem 4.1(i) asserts that for any ξ ∈ S, limt→+∞ Df (ξ, x(t)) exists. Since x is
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bounded on [0,+∞) and limt→+∞ ẋ(t) = 0X (cf. Theorem 3.1), we further have
limt→+∞ ψ̇(t) = 0. Hence, we deduce from the above inequality that

lim
t,t̃→+∞, t<t̃

α

2
‖x(t) − x(t̃)‖2

X = 0,

so that the Cauchy criteria at infinity is satisfied. Consequently, x(t) converges as
t → +∞ and, by Corollary 3.2, the limit belongs to S.

The above result complements our discussion in Remark 3.4 on the convergence
of the solutions of (ID) corresponding to the case when ‖h( · )‖2

Y admits a strong
minimum with respect to the set S, i.e.,

∃β > 0 ∀x ∈ X ‖h(x)‖2
Y ≥ inf‖h( · )‖2

Y + β dist(x, S)2.

In this case, however, it is not clear a priori to which point in S the solutions of (ID)
converge and, in particular, whether the convergence is towards a minimizer of the
convex minimization problem (P). This will be the subject of our investigation in the
following subsection.

4.2. Localization of the limit. Let us now provide a localization result of the
limit of the solutions of (ID). The following theorem characterizes the limit of a
solution of (ID) in terms of a “Df -like projection” of its initial data onto the closed
affine subspace S.

Theorem 4.4. Let ∇2f( · ) be α-elliptic, let S be non-empty and let x : [0,+∞) →
X be a solution of (ID) with initial data (x0, v0) ∈ X × X. Then, x(t) converges
strongly, as t → +∞, to the unique element x̄ ∈ S satisfying

Df (x̄, x0) − 〈x̄, v0〉X = infS Df( · , x0) − 〈 · , v0〉X .

Proof. Let x̄ ∈ S be such that x(t) → x̄ strongly in X as t → +∞ and let ξ ∈ S
be arbitrary. Using (ID) and the fact that ∇‖h(x̄)‖2

Y /2 = ∇‖h(ξ)‖2
Y /2 = 0X , we have

for any t ≥ 0,

〈ẍ(t) + ∇2f(x(t))ẋ(t), x̄− ξ〉X = −〈∇‖h(x(t))‖2
Y /2 − ∇‖h(ξ)‖2

Y /2, x̄− ξ〉X

= −〈x(t) − ξ,∇‖h(x̄)‖2
Y /2 − ∇‖h(ξ)‖2

Y /2〉X

= 0.

Integration over [0, t] yields

〈ẋ(t) − v0, x̄− ξ〉X + 〈∇f(x(t)) − ∇f(x0), x̄− ξ〉X = 0.

Since x(t) → x̄ and ẋ(t) → 0X strongly in X as t → +∞, we obtain

〈∇f(x̄) − ∇f(x0), x̄− ξ〉X = 〈v0, x̄− ξ〉X .

Using the Bregman three-points-identity [18, Lemma 3.1], it follows that

(4.1) Df (ξ, x̄) +Df (x̄, x0) = Df (ξ, x0) + 〈v0, x̄− ξ〉X ,

and thus,
Df(x̄, x0) − 〈x̄, v0〉X ≤ Df(ξ, x0) − 〈ξ, v0〉X .

This inequality being true for any ξ ∈ S, we deduce that

Df (x̄, x0) − 〈x̄, v0〉X = infS Df( · , x0) − 〈 · , v0〉X .

Noticing that Df ( · , x0) − 〈 · , v0〉X is α-strongly convex, we conclude the result.
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As a direct consequence of the previous result, we have the following localization
estimate of the limit of a solution of (ID) given in terms of the “initial deflection” of
the Bregman distance Df with its quadratic lower bound.

Corollary 4.5. Under the hypotheses of Theorem 4.4, let x̄ ∈ S be such that
x(t) → x̄ strongly in X as t → +∞. Then,

α

2
‖x̄− projS(x0 +

1

α
v0)‖2

X ≤ Df (projS(x0 +
1

α
v0), x0) − α

2
‖x0 − projS(x0 +

1

α
v0)‖2

X .

Proof. Let x̄ ∈ S be such that x(t) → x̄ strongly in X as t → +∞ and let ξ ∈ S
be arbitrary. From (4.1) and the fact that f is α-strongly convex, we deduce that

α

2
‖x̄− ξ‖2

X +
α

2
‖x0 − x̄‖2

X − α〈x̄ − ξ,
1

α
v0〉X ≤ Df(ξ, x0),

which, in view of a simple expansion, reads

α

2
‖x̄− ξ‖2

X +
α

2
‖x̄− (x0 +

1

α
v0)‖2

X − α

2
‖ξ− (x0 +

1

α
v0)‖2

X ≤ Df (ξ, x0) − α

2
‖x0 − ξ‖2

X .

Choosing ξ = projS(x0 + v0/α) ∈ S then gives the desired inequality.

Remark 4.6. In the particular case when ∇2f( · ) = α Id, we infer that any solu-
tion x(t) of (ID) converges, as t → +∞, to the unique element x̄ ∈ S satisfying

α

2
‖x̄− (x0 +

1

α
v0)‖2

X = infS
α

2
‖ · − (x0 +

1

α
v0)‖2

X .

Indeed, it suffices to observe that the Bregman distance associated with f coincides
with its quadratic lower bound, i.e.,

Df (projS(x0 +
1

α
v0), x0) − α

2
‖x0 − projS(x0 +

1

α
v0)‖2

X = 0.

This fact, together with Corollary 4.5, clearly implies that x̄ = projS(x0 + v0/α). We
note that a similar characterization has yet been obtained by Alvarez [1, Proposition
2.5] in the study of “heavy ball with friction” differential system; see also Lemaire [22,
Corollary 2.2] for the respective result on the “steepest descent method”.

Finally, our next result characterizes the minimizing properties of the solutions
of (ID) relative to a specific preselection of their initial data.

Corollary 4.7. Under the hypotheses of Theorem 4.4, let x̄ ∈ S be such that
x(t) → x̄ strongly in X as t → +∞. Then, the following assertions hold:

(i) If v0 = 0X, then x̄ ∈ S is the unique element satisfying

Df (x̄, x0) = infS Df ( · , x0);

(ii) If v0 + ∇f(x0) = 0X , then x̄ ∈ S is the unique element satisfying

f(x̄) = infS f( · ).

The proof is an immediate consequence of Theorem 4.4 and is left to the reader.

By virtue of Corollary 4.7(ii), we observe that whenever ‖h( · )‖2
Y admits a strong

minimum with respect to the set S and with zero value, i.e.,

∃β > 0 ∀x ∈ X ‖h(x)‖2
Y ≥ β dist(x, S)2,

any solution x(t) of (ID) with corresponding initial data (x0,−∇f(x0)) ∈ X×X con-
verges, as t → +∞, to the unique minimizer of the convex minimization problem (P).
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5. Exponential decay rate estimates. In this section, we further provide
asymptotic estimates on the convergence rate of the solutions of (ID) in the restrictive
but important case when f is quadratic. In particular, our analysis relies on the
additional assumptions that

(A6) f : X → R satisfies condition (C), i.e.,

2Df(y, x) − 〈∇2f(x)(x − y), x− y〉X ≥ 0, ∀x, y ∈ X ;

(A7) ∇2f( · ) : X → X is γ-bounded, i.e.,

∃γ > 0 ∀x, y ∈ X 〈∇2f(x)y, y〉X ≤ γ‖y‖2
X.

We remark that condition (C) is verified whenever f : X → R is minorized by its
second-order Taylor approximations; cf. the case when f is a quadratic form. Since
∇2f( · ) is α-elliptic and γ-bounded, we further have for any x, y ∈ X ,

α‖x− y‖2
X/2 ≤ Df(y, x) ≤ γ‖x− y‖2

X/2.

Given the above assumptions, the following theorem characterizes the exponential
decay properties of the solutions of (ID) whenever ‖h( · )‖2

Y admits a strong minimum.

Theorem 5.1. Let ∇2f( · ) be α-elliptic and γ-bounded, and suppose that ‖h( · )‖2
Y

admits a strong minimum at x̄ ∈ X with constant β. Let f satisfy condition (C) and
set

ρ =

{

α/2, if γ2 ≤ 4β,

min{α, γ −
√

γ2 − 4β}/2, if γ2 > 4β.

Let x : [0,+∞) → X be a solution of (ID). Then, the following assertions hold:
(i) If ρ2 − γρ+ β > 0, then, as t → +∞, it holds that

‖ẋ(t)‖2
X = O(e−2ρt) and ‖x(t) − x̄‖2

X = O(e−2ρt);

(ii) If ρ2 − γρ+ β = 0, then, as t → +∞, it holds that

‖ẋ(t)‖2
X = O(t2e−2ρt) and ‖x(t) − x̄‖2

X = O(t2e−2ρt).

Proof. Let x̄ ∈ S and define ϑ : [0,+∞) → R by ϑ(t) = ‖ẋ(t) + ρ(x(t) − x̄)‖2
X/2

for some ρ > 0 (to be chosen) such that ϑ̇(t) = 〈ẋ(t) + ρ(x(t) − x̄), ẍ(t) + ρẋ(t)〉X .
Consider again φ : [0,+∞) → R defined by φ(t) = ‖x(t) − x̄‖2

X/2. Using (ID) and
the fact that ∇‖h(x̄)‖2

Y /2 = 0X , we have for any t ≥ 0,

ϑ̇(t) + ρ2φ̇(t) + 〈(∇2f(x(t)) − 2ρ Id)ẋ(t), ẋ(t) + ρ(x(t) − x̄)〉X + ρ‖ẋ(t)‖2
X

+ 〈∇‖h(x(t))‖2
Y /2 − ∇‖h(x̄)‖2

Y /2, ẋ(t) + ρ(x(t) − x̄)〉X = 0.

Using successively the chain rule and the fact that

〈∇‖h(x(t))‖2
Y /2 − ∇‖h(x̄)‖2

Y /2, x(t) − x̄〉X = ‖h(x(t))‖2
Y − inf ‖h( · )‖2

Y ,

we obtain

ϑ̇(t) + ρ2φ̇(t) +
d

dt

(

‖h(x(t))‖2
Y /2 − inf ‖h( · )‖2

Y /2
)

+ 2ρ
(

‖ẋ(t)‖2
X/2 + ‖h(x(t))‖2

Y /2 − inf ‖h( · )‖2
Y /2

)

+ 〈(∇2f(x(t)) − 2ρ Id)ẋ(t), ẋ(t) + ρ(x(t) − x̄)〉X = 0.
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Developing the above expression yields

ϑ̇(t) + ρ2φ̇(t) +
d

dt

(

‖h(x(t))‖2
Y /2 − inf ‖h( · )‖2

Y /2 − ρDf (x̄, x(t))
)

+ 2ρ
(

ϑ(t) + ρ2φ(t) + ‖h(x(t))‖2
Y /2 − inf ‖h( · )‖2

Y /2 − ρDf (x̄, x(t))
)

+ 〈(∇2f(x(t)) − 2ρ Id)(ẋ(t) + ρ(x(t) − x̄)), ẋ(t) + ρ(x(t) − x̄)〉X

+ ρ2
(

2Df(x̄, x(t)) − 〈∇2f(x(t))(x(t) − x̄), x(t) − x̄〉X

)

= 0.

Since ∇2f( · ) is α-elliptic, we have

〈(∇2f(x(t)) − 2ρ Id)(ẋ(t) + ρ(x(t) − x̄)), ẋ(t) + ρ(x(t) − x̄)〉X ≥ 2(α− 2ρ)ϑ(t),

which, together with the above equation, gives

ϑ̇(t) + ρ2φ̇(t) +
d

dt

(

‖h(x(t))‖2
Y /2 − inf ‖h( · )‖2

Y /2 − ρDf (x̄, x(t))
)

+ 2ρ
(

ϑ(t) + ρ2φ(t) + ‖h(x(t))‖2
Y /2 − inf ‖h( · )‖2

Y /2 − ρDf (x̄, x(t))
)

+ 2(α− 2ρ)ϑ(t) + ρ2
(

2Df(x̄, x(t)) − 〈∇2f(x(t))(x(t) − x̄), x(t) − x̄〉X

)

≤ 0.

An immediate integration over [0, t] shows that there exists C ≥ 0 such that

ϑ(t) + ρ2φ(t) + ‖h(x(t))‖2
Y /2 − inf ‖h( · )‖2

Y /2 − ρDf (x̄, x(t))

+ 2(α− 2ρ)

∫ t

0

e−2ρ(t−τ)ϑ(τ) dτ + ρ2

∫ t

0

e−2ρ(t−τ)κ(τ) dτ ≤ Ce−2ρt,

where
κ(t) = 2Df(x̄, x(t)) − 〈∇2f(x(t))(x(t) − x̄), x(t) − x̄〉X .

Using that ∇2f( · ) is γ-bounded and the fact that ‖h( · )‖2
Y admits a strong mini-

mum at x̄ ∈ S with constant β, we have Df (x̄, x(t)) ≤ γφ(t) and ‖h(x(t))‖2
Y /2 −

inf ‖h( · )‖2
Y /2 ≥ βφ(t) such that for any t ≥ 0,

ϑ(t) + (ρ2 − γρ+ β)φ(t) + 2(α− 2ρ)

∫ t

0

e−2ρ(t−τ)ϑ(τ) dτ

+ ρ2

∫ t

0

e−2ρ(t−τ)κ(τ) dτ ≤ Ce−2ρt.

(5.1)

Let us now determine the largest value for ρ ∈ (0, α/2] such that ρ2 − γρ+β ≥ 0.
Clearly, if γ2 ≤ 4β, then ρ2 − γρ + β ≥ 0 holds for any ρ > 0. On the other hand,
if γ2 > 4β, then ρ2 − γρ + β ≥ 0 is attained whenever ρ ≤ γ/2 −

√

γ2 − 4β/2.
Consequently, we may take

ρ =

{

α/2, if γ2 ≤ 4β,

min{α, γ −
√

γ2 − 4β}/2, if γ2 > 4β.

We have either one of the following cases:
(i) Suppose that ρ2 − γρ+ β > 0. In this case, we deduce from (5.1) and the fact

that f satisfies condition (C) that for any t ≥ 0,

e2ρtϑ(t) ≤ C and e2ρtφ(t) ≤ C

ρ2 − γρ+ β
.
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Passing to the upper limit as t → +∞ yields

lim sup
t→+∞

e2ρtϑ(t) < +∞ and lim sup
t→+∞

e2ρtφ(t) < +∞.

Moreover, in view of the triangle inequality, we have

e2ρt‖ẋ(t)‖2
X ≤ 4e2ρtϑ(t) + 4ρ2e2ρtφ(t)

and thus,
lim sup
t→+∞

e2ρt‖ẋ(t)‖2
X < +∞.

(ii) Suppose now that ρ2 − γρ + β = 0. In this case, we observe from (5.1) and
the fact that f satisfies condition (C) that for any t ≥ 0,

e2ρtϑ(t) ≤ C.

Using this inequality together with the fact that

√

e2ρtφ(t) ≤
√

φ(0) +

∫ t

0

√

e2ρτϑ(τ) dτ,

we obtain
√

e2ρtφ(t) ≤
√
Ct+

√

φ(0).

Taking the square and multiplying the resulting inequality by t−2 yields

t−2e2ρtφ(t) ≤ C + 2
√

Cφ(0)t−1 + φ(0)t−2.

This majorization being valid for any t > 0, we deduce

lim sup
t→+∞

e2ρtϑ(t) < +∞ and lim sup
t→+∞

t−2e2ρtφ(t) < +∞,

and thus,
lim sup
t→+∞

t−2e2ρt‖ẋ(t)‖2
X < +∞,

concluding the result.

Remark 5.2. We note that the above decay rate estimates remain asymptotically
correct whenever f satisfies condition (C) locally around x̄ ∈ X , i.e.,

∃δ > 0 ∀x ∈ X ∩Bδ(x̄) 2Df(x̄, x) − 〈∇2f(x)(x − x̄), x− x̄〉X ≥ 0.

However, to verify this assumption, one requires a priori knowledge of the unique
minimizer x̄ ∈ X of ‖h( · )‖2

Y . We leave the details to the reader.

Remark 5.3. Let us further note that, in view of Theorem 5.1, whenever ρ ∈
(0, α/2] is chosen such that ρ2 − γρ+ β ≥ 0, we have

∫ t

0

e−2ρ(t−τ)κ(τ) dτ ≤ C

ρ2
e−2ρt.

This estimate suggests that κ(t) converges to zero in average, as t → +∞, at an
exponential rate. In particular, it holds that

∫ ∞

0

e2ρτκ(τ) dτ < +∞.
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The above result complements our discussion in Proposition 3.3 with exponential
decay rate estimates on the solutions of (ID) in the case when f satisfies condition
(C). Assuming moreover that ∇2f( · ) = α Id, we have the following refined asymptotic
decay properties.

Corollary 5.4. Let ∇2f( · ) = α Id and suppose that ‖h( · )‖2
Y admits a strong

minimum at x̄ ∈ X with constant β. Let x : [0,+∞) → X be a solution of (ID).
Then, the following assertions hold:

(i) If α2 < 4β, then, as t → +∞, it holds that

‖ẋ(t)‖2
X = O(e−αt) and ‖x(t) − x̄‖2

X = O(e−αt);

(ii) If α2 = 4β, then, as t → +∞, it holds that

‖ẋ(t)‖2
X = O(t2e−αt) and ‖x(t) − x̄‖2

X = O(t2e−αt);

(iii) If α2 > 4β, then, as t → +∞, it holds that

‖ẋ(t)‖2
X = O(e−(α−δ)t) and ‖x(t) − x̄‖2

X = O(e−(α−δ)t),

where δ =
√

α2 − 4β.

Proof. (i)–(ii) This is an immediate consequence of Theorem 5.1(i)–(ii).

(iii) Suppose that α2 > 4β and let ρ = (α + δ)/2, where δ =
√

α2 − 4β, so that
ρ2 − αρ + β = 0. From (5.1) and the fact that ∇2f( · ) = α Id, we infer that there
exists C ≥ 0 such that for any t ≥ 0,

e(α+δ)tϑ(t) ≤ C + 2δ

∫ t

0

e(α+δ)τϑ(τ) dτ.

Applying Gronwall’s inequality to t 7→ e(α+δ)tϑ(t) yields

e(α+δ)tϑ(t) ≤ Ce2δt.

Using again this inequality together with the fact that

√

e(α+δ)tφ(t) ≤
√

φ(0) +

∫ t

0

√

e(α+δ)τϑ(τ) dτ,

we obtain
√

e(α+δ)tφ(t) ≤
√
C

δ
eδt +

√

φ(0) −
√
C

δ

and thus,

e(α−δ)tφ(t) ≤ C

δ2
+ 2

√
C

δ

(

√

φ(0) −
√
C

δ

)

e−δt +
(

√

φ(0) −
√
C

δ

)2

e−2δt.

Passing to the upper limit as t → +∞ yields the desired estimates.

The previous result essentially recovers the optimal decay rate estimates known
for the classical damped harmonic oscillator. In particular, we observe from Corollary
5.4 that the decay properties of the solutions of (ID) may be categorized into (i) the
“underdamped case”, (ii) the “critically damped case” and (iii) the “overdamped
case”. We refer to section 7 for a graphical illustration of the decay rate estimates.
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6. Further extensions. In this section, we discuss further extensions on the in-
ertial dynamics (ID) with the aim to weaken some of the previously stated assump-
tions. We first show that the inertial dynamics (ID) can be equivalently expressed as
a first-order differential system with no occurrence of the Hessian. We then further in-
troduce an augmented variant of (ID) which allows for a relaxation of the ellipticity
condition imposed on the Hessian of f .

6.1. First-order representation. Let us show that the inertial dynamics (ID)
admit an equivalent first-order representation in terms of the Arrow–Hurwicz differ-
ential system

(AH)

{

ẋ+ ∇f(x) + h′(x)∗λ = 0X

λ̇− h(x) = 0Y

with initial data (x0, λ0) ∈ X×Y . To this end, recall that (x, λ) : [0,+∞) → X×Y is
a (classical) solution of (AH) if (x, λ) ∈ C1([0,+∞);X × Y ) and (x, λ) satisfies (AH)
on [0,+∞) with (x(0), λ(0)) = (x0, λ0).

Proposition 6.1. Let h′( · ) : X → Y be surjective, and let (x0, v0) ∈ X×X and
λ0 ∈ Y satisfy v0 + ∇f(x0) + h′(x0)∗λ0 = 0X. Then, the following assertions are
equivalent:

(i) x : [0,+∞) → X is a solution of (ID) with initial data (x0, v0);
(ii) ∃λ : [0,+∞) → Y such that (x, λ) : [0,+∞) → X × Y is a solution of (AH)

with initial data (x0, λ0).

Proof. (i) =⇒ (ii) Let x : [0,+∞) → X be a solution of (ID) with initial data
(x0, v0) ∈ X ×X and define λ : [0,+∞) → Y such that for any t ≥ 0,

ẋ(t) + ∇f(x(t)) + h′(x(t))∗λ(t) = 0X .

Observing that λ belongs to C1([0,+∞);Y ), we deduce that

ẍ(t) + ∇2f(x(t))ẋ(t) + h′(x(t))∗λ̇(t) = 0X ,

which, in view of (ID), yields

h′(x(t))∗λ̇(t) − h′(x(t))∗h(x(t)) = 0X .

Since h′( · ) is surjective, it follows that

λ̇(t) − h(x(t)) = 0Y .

Moreover, from v0 + ∇f(x0) + h′(x0)∗λ0 = 0X and the fact that v0 + ∇f(x0) +
h′(x0)∗λ(0) = 0X , we obtain λ(0) = λ0. Consequently, (x, λ) : [0,+∞) → X × Y is a
solution of (AH) with initial data (x0, λ0).

(ii) =⇒ (i) Conversely, let (x, λ) : [0,+∞) → X × Y be a solution of (AH) with
initial data (x0, λ0) ∈ X × Y . Since f is twice continuously differentiable, we observe
that ẋ = −∇f(x) − h′(x)∗λ belongs to C1([0,+∞);X). Differentiation yields, for any
t ≥ 0,

ẍ(t) + ∇2f(x(t))ẋ(t) + h′(x(t))∗λ̇(t) = 0X .

By taking (AH) into account, we obtain

ẍ(t) + ∇2f(x(t))ẋ(t) + ∇‖h(x(t))‖2
Y /2 = 0X .

Using again v0 + ∇f(x0) + h′(x0)∗λ0 = 0X and the fact that ẋ(0) + ∇f(x0) +
h′(x0)∗λ0 = 0X , we conclude that ẋ(0) = v0 and thus, x : [0,+∞) → X is a so-
lution of (ID) with initial data (x0, v0).
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The previous result provides conditions under which the inertial dynamics (ID)
prove to be equivalent to the (AH) differential system. Despite being of first-order,
the (AH) model is particularly favorable as it does not incorporate any second-order
information on f . As such, it may still provide a meaning to (ID) even in the case
when f is not twice continuously differentiable. Our next result asserts that the solu-
tions of (AH) indeed enjoy the same basic properties as the solutions of (ID) given
the weakened assumptions that

(A1)′ f : X → R is convex and continuously differentiable;
(A2)′ ∇f : X → X is Lipschitz continuous on bounded sets.

To ease the exposition, let X × Y be equipped with the Hilbertian product structure
〈 · , · 〉 = 〈 · , · 〉X + 〈 · , · 〉Y and induced norm ‖ · ‖.

Theorem 6.2. For any (x0, λ0) ∈ X × Y there exists a unique solution (x, λ) :
[0,+∞) → X × Y of (AH). Moreover,

(i) t 7→ ‖(ẋ(t), λ̇(t))‖ is non-increasing on [0,+∞) and

‖(ẋ(t), λ̇(t))‖ ≤ ‖(∇f(x0) + h′(x0)∗λ0,−h(x0))‖, ∀t ≥ 0;

(ii) limt→+∞‖(ẋ(t), λ̇(t))‖ exists;
(iii) (ẋ, λ̇) ∈ L∞([0,+∞);X × Y ).

The above result suggests that the conclusions of Theorem 2.1 on the inertial
dynamics (ID) may directly be conveyed to the (AH) differential system although less
regularity assumptions on f are imposed. In fact, the proof of Theorem 6.2 follows the
same line of arguments used in the proof of Theorem 2.1 with the key difference that
the decay property of the mapping t 7→ ‖(ẋ(t), λ̇(t))‖ is enforced by the monotonicity
of the operator

(x, λ) 7−→ (∇f(x) + h′(x)∗λ,−h(x)),

that is, the “generator” of the (AH) differential system. We leave the details to the
reader.

Remark 6.3. We note that the assertions of Theorem 6.2 remain valid even under
the assumption that f : X → R ∪ {+∞} is a proper convex lower-semicontinuous
function. In this case, the (AH) dynamics generalize to the evolution system

{

ẋ+ ∂f(x) + h′(x)∗λ ∋ 0X

λ̇− h(x) = 0Y

with ∂f denoting the convex subdifferential of f . The existence and uniqueness of the
(strong) solutions of the above evolution system then follows from the general theory
for semi-groups of contractions generated by maximal monotone operators. We shall
not pursue this point here but instead refer to Brézis [14] for a detailed study of the
subject.

6.2. Augmented inertial dynamics. Let us now introduce an augmented vari-
ant of the inertial dynamics (ID) aiming to weaken the ellipticity condition imposed
on the Hessian of f .

Consider the second-order differential system

(AD) ẍ+
(

∇2f(x) + ρ∇2‖h(x)‖2
Y /2

)

ẋ+ ∇‖h(x)‖2
Y /2 = 0X

with initial data (x0, v0) ∈ X × X and constant ρ > 0. We take for granted the
existence and uniqueness of the (classical) solutions of the Augmented Dynamics (AD)
and assume henceforth that
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(A3)′ h′( · ) : X → Y is surjective;
(A4)′ ∇2f( · ) : X → X is α-elliptic on kerh′( · ), i.e.,

∃α > 0 ∀x ∈ X 〈∇2f(x)y, y〉X ≥ α‖y‖2
X

for all y ∈ kerh′(x);
(A5)′ ∇2f( · ) : X → X is γ-bounded.

Given the above assumptions, the additional geometric damping in (AD) allows
one to infer the ellipticity of ∇2f( · ) + ρ∇2‖h( · )‖2

Y /2 even though ∇2f( · ) is only
assumed to be α-elliptic on kerh′( · ). The following result makes this precise. We
omit the proof but refer to Polyak and Tret’yakov [27, Lemma 1] for a similar result
on quadratic forms which are elliptic on subspaces.

Lemma 6.4. Let h′( · ) be surjective, and let ∇2f( · ) be α-elliptic on kerh′( · ) and
γ-bounded. Then, there exists ρ̄ > 0 such that

∃ᾱ > 0 ∀x, y ∈ X 〈(∇2f(x) + ρ∇2‖h(x)‖2
Y /2)y, y〉X ≥ ᾱ‖y‖2

X

for all ρ ≥ ρ̄.

As an immediate consequence, we observe that f( · ) + ρ‖h( · )‖2/2 is ᾱ-strongly
convex whenever ρ > 0 is chosen sufficiently large. In this case, we have for any
x, y ∈ X ,

Df (y, x) + ρD‖h( · )‖2
Y

/2(y, x) ≥ ᾱ‖x− y‖2
X/2,

where Df and D‖h( · )‖2
Y

/2 denote, respectively, the Bregman distances associated with

f and ‖h( · )‖2
Y /2.

In view of the above discussion, we readily deduce that the conclusions of Theo-
rems 3.1 and 4.3 on the inertial dynamics (ID) also remain valid for the augmented
dynamics (AD) given that the constant ρ > 0 is chosen sufficiently large. Moreover,
the minimizing properties of the solutions of (AD) with respect to the convex min-
imization problem (P) are maintained as the following variants of Theorem 4.4 and
Corollary 4.7 suggest.

Theorem 6.5. Let h′( · ) be surjective, and let ∇2f( · ) be α-elliptic on kerh′( · )
and γ-bounded. Let ρ > 0 be sufficiently large, and let x : [0,+∞) → X be a solution
of (AD) with initial data (x0, v0) ∈ X×X. Then, x(t) converges strongly, as t → +∞,
to the unique element x̄ ∈ S satisfying

Df+ρ‖h( · )‖2
Y

/2(x̄, x0) − 〈x̄, v0〉X = infS Df+ρ‖h( · )‖2
Y

/2( · , x0) − 〈 · , v0〉X .

Corollary 6.6. Under the hypotheses of Theorem 6.5, let x̄ ∈ S be such that
x(t) → x̄ strongly in X as t → +∞. Then, the following assertions hold:

(i) If v0 = 0X, then x̄ ∈ S is the unique element satisfying

Df+ρ‖h( · )‖2
Y

/2(x̄, x0) = infS Df+ρ‖h( · )‖2
Y

/2( · , x0);

(ii) If v0+∇f(x0)+ρ∇‖h(x0)‖2
Y /2 = 0X , then x̄ ∈ S is the unique element satisfying

f(x̄) + ρ‖h(x̄)‖2
Y /2 = infS f( · ) + ρ‖h( · )‖2

Y /2.

By virtue of Corollary 6.6(ii), we infer that any solution x(t) of (AD) with corre-
sponding initial data (x0,−∇f(x0)−ρ∇‖h(x0)‖2

Y /2) ∈ X×X converges, as t → +∞,
to the unique minimizer of the augmented convex minimization problem

inf {f(x) + ρ‖h(x)‖2
Y /2 | h(x) = 0Y }.
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Noticing that the set of minimizers of the augmented problem coincides with the one
of (P), we conclude that the convergence is towards the unique minimizer of the con-
vex minimization problem (P).

7. Numerical experiments. In this section, we perform numerical experiments
on the inertial dynamics (ID) and the Arrow–Hurwicz differential system (AH) to il-
lustrate the minimizing properties of their solutions relative to the linearly constrained
convex minimization problem (P). In our numerical tests, we consider three simple
but representative examples on convex, respectively, strongly convex programming in
two dimensions.

Example 7.1 (Convex case). Let X,Y = R
2 and consider the convex but not

strongly convex function f : R2 → R defined by f(x1, x2) = (x1 + x2)2/2. Moreover,
let h : R2 → R

2 be defined by h(x1, x2) = A(x1, x2) − b, where A(x1, x2) = (x1, x2)
and b = (1, 1). Clearly, (x1, x2) 7→ ‖h(x1, x2)‖2 admits a strong minimum at x̄ = (1, 1)
and thus, S = {x̄}. The evolution of the quantity ‖x(t)−x̄‖ along with the trajectories
of the solutions x(t) = (x1(t), x2(t)) of (ID) and (AH) with corresponding initial data
x0 = (0, 0), v0 = (−2, 0) and λ0 = (2,−1/2) is depicted in Figure 1.
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Figure 1: Graphical view on the evolution of ‖x(t) − x̄‖ and the trajectories of the
solutions x(t) = (x1(t), x2(t)) of (ID) and (AH) in the convex case.

Analyzing Figure 1, we observe that the solutions x(t) of (ID) and (AH) both
fail to converge, as t → +∞, to the unique feasible (and thus optimal) point x̄ ∈ S of
the convex minimization problem (P). While the solutions of (ID) and (AH) remain
bounded, cf. Remark 2.3, they both admit an oscillatory behavior corresponding to
the “direction of vanishing damping” induced by the Hessian of f ; cf. the sublevel
sets of f depicted as dotted lines in the right panel of Figure 1. Despite the lack of
damping, we observe that the Cesàro average σ(t) of the solution of (ID) converges, as
t → +∞, to the unique element x̄ ∈ S. Moreover, the convergence obeys, as t → +∞,
the estimate ‖σ(t) − x̄‖ = O(1/t); see Proposition 2.6. Finally, we remark that the
solutions of (ID) and (AH) indeed share a similar behavior for the given set of initial
conditions. In fact, both solutions are indistinguishable whenever their initial data is
chosen according to Proposition 6.1.

Example 7.2 (Strongly convex case). Let X = R
2, Y = R, and consider the

quadratic function f : R2 → R defined by f(x1, x2) = (x2
1 − x1x2 + x2

2)/2. Clearly, f
is α-strongly convex with modulus α = 1/2. Let further h : R2 → R be defined by
h(x1, x2) = A(x1, x2) − b, where A(x1, x2) = x1 +x2 and b = 1. In this case, we easily
verify that (x1, x2) 7→ |h(x1, x2)|2 admits a strong minimum with respect to the set
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S = {(x1, x2) ∈ R
2 | x1 + x2 = 1}. Moreover, argminS f = x̄ with x̄ = (1/2, 1/2).

Figure 2 displays the evolution of ‖x(t) − x̄‖2 together with the trajectories of the
solutions x(t) = (x1(t), x2(t)) of (ID) and (AH) with associated initial data x0 =
(−1, 1), v0 = (3/2,−3/2) and λ0 = 1.
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Figure 2: Graphical view on the evolution of ‖x(t) − x̄‖2 and the trajectories of the
solutions x(t) = (x1(t), x2(t)) of (ID) and (AH) in the strongly convex case.

According to Figure 2, the solutions of (ID) and (AH) tend to stabilize asymp-
totically towards an element of the set S; cf. Theorem 4.3. Moreover, as the initial
velocity v0 of the solution x(t) of (ID) is taken along the negative direction of the gra-
dient of f (cf. the right panel of Figure 2), we conclude its convergence, as t → +∞,
towards the unique minimizer x̄ ∈ S of the (strongly) convex minimization problem
(P); see Corollary 4.7(ii). Note that, however, for an arbitrary set of initial conditions,
the limit of the solution of (ID) is characterized according to Theorem 4.4, following a
hierarchical minimization principle involving the Bregman distance associated with f .
It is also worth noting that the convergence appears to obey, as t → +∞, the estimate
‖x(t) − x̄‖2 = O(e−αt) as predicted by Theorem 5.1(i), even though the hypothesis
on the strong minimum at x̄ ∈ S is not verified. Geometrically, this is apparent as
the trajectories of (ID) and (AH) evolve, for large values of t, solely in the direction
where f admits its “lowest curvature” determined by the value of α.

Example 7.3 (Decay rate estimates). Finally, let X,Y = R
2 and consider the

parameterized quadratic function f : R2 → R defined by f(x1, x2) = α(x2
1 + x2

2)/2,
where α > 0. In this case, the parameter α directly translates into a viscous damping
coefficient of the inertial dynamics (ID). Let further h : R2 → R

2 be given in terms
of h(x1, x2) = A(x1, x2) − b, where A(x1, x2) = (x1, x2) and b = (1, 1). Once again,
(x1, x2) 7→ ‖h(x1, x2)‖2 admits a strong minimum at x̄ = (1, 1) with constant β = 1
and thus, S = {x̄}. Figure 3 illustrates the decay properties of the squared error
‖x(t) − x̄‖2 of the solutions x(t) = (x1(t), x2(t)) of (ID) and (AH) for the distinct
values (i) α = 1, (ii) α = 2 and (iii) α = 3. The initial data is set accordingly to
x0 = (−1, 0), v0 = (α, 0) and λ0 = (2,−1/2).

Figure 3 suggests that the solutions x(t) of (ID) and (AH) converge, as t → +∞,
at an exponential rate towards the unique feasible (and thus optimal) point x̄ ∈ S
of the (strongly) convex minimization problem (P). Indeed, the decay properties
of the solutions of (ID) can be categorized as predicted by Corollary 5.4: In case
(i), we have α2 < 4β, and thus, ‖x(t) − x̄‖2 = O(e−αt) as t → +∞. We refer to
this case as the “underdamped case” as the solutions of (ID) and (AH) both admit
a significant oscillatory behavior. In case (ii), it holds that α2 = 4β, and thus,



28 S. K. NIEDERLÄNDER

0 5 10 15 20 25
10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3: Decay properties of the squared error ‖x(t) − x̄‖2 of the solutions x(t) =
(x1(t), x2(t)) of (ID) and (AH) for distinct values of α.

‖x(t) − x̄‖2 = O(t2e−αt) as t → +∞. This case refers to the “critically damped case”
for which we observe the fastest possible convergence of the solutions of (ID). Finally,
in case (iii), we have α2 > 4β such that ‖x(t)− x̄‖2 = O(e−(α−δ)t) as t → +∞, where

δ =
√

α2 − 4β. In this case, referred to as the “overdamped case”, the decay of the
solutions of (ID) and (AH) is considerably degraded; cf. the right panel of Figure 3
for a graphical illustration of the decay rate as a function of α. It is interesting to note
that, in the first two cases, the decay rate estimates are fully characterized in terms of
the damping coefficient α associated with f , whereas in the last case, the decay also
depends on the constant β which implicitly captures the potential effects induced by
h. Finally, we remark that the decay rate estimates on the solutions of (ID) appear to
remain valid also for the solutions of the classical Arrow-Hurwicz differential system
(AH).
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