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Abstract— In a real Hilbert space setting, we investigate the
asymptotic behavior of the solutions of the nonautonomous
Arrow–Hurwicz differential system. We show that its solutions
weakly converge in average towards a saddle point of some
limiting closed convex-concave bifunction provided that the as-
sociated gap function vanishes sufficiently fast. If, in addition,
the limiting saddle function verifies a strict convexity-concavity
condition, we find that the solutions of the nonautonomous Ar-
row–Hurwicz differential system not only converge in an er-
godic sense, but in fact admit a weak limit. Numerical exper-
iments illustrate our theoretical findings.

I. INTRODUCTION

Let X and Y be real Hilbert spaces endowed with in-

ner products 〈 · , · 〉X , 〈 · , · 〉Y and associated norms ‖ · ‖X ,

‖ · ‖Y . Consider the nonautonomous Arrow–Hurwicz differ-

ential system
{

ẋ+∇xLt(x, λ) = 0X

λ̇−∇λLt(x, λ) = 0Y ,
(NAH)

where for each t ≥ 0, Lt : X × Y → R is a convex-

concave and continuously differentiable bifunction. We say

that (x, λ) : [0,+∞[ → X × Y is a (classical) solution of

(NAH) if (x, λ) ∈ C1([0,+∞[;X × Y ) such that (x, λ) sat-

isfies (NAH) on [0,+∞[. We take for granted the existence

of the (classical) solutions of (NAH) but refer to Browder

[1] and Haraux [2] for the respective results on general non-

autonomous evolution equations.

The (NAH) differential system, in its autonomous form,

essentially dates back to the early work of Arrow and Hur-

wicz [3] (see also Arrow et al. [4] and Kose [5]) and is well

known to be intimately related to the mini-maximization of

the “saddle functions” Lt; see, e.g., Rockafellar [6]. Indeed,

we immediately observe that for each t ≥ 0, the zeros of the

operator

Tt : X × Y −→ X × Y

(x, λ) 7−→
(

∇xLt(x, λ),−∇λLt(x, λ)
)

are precisely the saddle points of Lt. Moreover, the operators

Tt are maximally monotone on X×Y as they are both con-

tinuous and monotone; cf. Bauschke and Combettes [7]. As

such, the (NAH) differential system falls into the category of

nonautonomous evolution equations governed by maximally

monotone operators; we refer the reader to Kato [8] (see al-

so Crandall and Pazy [9], Attouch and Damlamian [10]) for a
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detailed exposition of the subject. We remark that the maxi-

mal monotonicity of the operators Tt may also be deduced

more elementary from the convexity-concavity properties of

the saddle functions Lt; cf. Rockafellar [11].
In this work, we investigate the asymptotic behavior of the

solutions of (NAH) in line with the results by Furuya et al.

[12] and Attouch et al. [13]. Our convergence results thereby

essentially rely on the assumption that there exists a limiting

closed convex-concave bifunction L∞ : X × Y → R such

that the associated gap function GAPLt−L∞
: X × Y →

R ∪ {+∞} defined by

GAPLt−L∞
(ξ, η) = sup

µ∈Y

(

Lt(ξ, µ)− L∞(ξ, µ)
)

− inf
ν∈X

(

Lt(ν, η)− L∞(ν, η)
)

tends to zero “sufficiently fast” as t → +∞. More precisely,

assuming that the bifunction L∞ admits a non-empty set of

saddle points1 S ×M such that the condition

∀(ξ, η) ∈ X × Y,

∫ ∞

0

GAPLτ−L∞
(ξ, η) dτ < +∞ (Γ)

is verified, we show that the solutions (x, λ) : [0,+∞[ →
X × Y of (NAH) weakly converge in average towards an

element of S×M , that is, there exists (σ̄, ω̄) ∈ S×M such

that

1

t

∫ t

0

(x(τ), λ(τ)) dτ ⇀ (σ̄, ω̄) as t → +∞.

If condition (Γ) is satisfied and, in addition, the closed con-

vex-concave bifunction L∞ is such that for all (x̄, λ̄) ∈ S×
M and (ξ, η) /∈ S ×M , it holds that

L∞(x̄, η) < L∞(x̄, λ̄) < L∞(ξ, λ̄), (Σ)

we prove that the solutions (x, λ) : [0,+∞[ → X × Y of

(NAH) in fact admit a weak limit in S×M , i.e., there exists

(x̄, λ̄) ∈ S ×M such that

(x(t), λ(t)) ⇀ (x̄, λ̄) as t → +∞.

In view of the above results, we conclude that whenever

the saddle functions Lt tend sufficiently fast (in the sense of

condition (Γ)) towards some limiting closed convex-concave

bifunction L∞, the asymptotic behavior of the solutions of

(NAH) is essentially characterized by the one of the solutions

of the autonomous Arrow–Hurwicz differential system; see,

e.g., Venets [15], Flåm and Ben-Israel [16], Chbani and Riahi

[17], and Niederländer [18], [19]. Our numerical experiments

support this observation.

1We recall that the set of saddle points of L∞ is a closed and convex prod-
uct set in X × Y ; see, e.g., Rockafellar [14, Corollary 37.5.3].



II. PRELIMINARY RESULTS

Let X×Y be equipped with the Hilbertian product struc-

ture 〈 · , · 〉 = 〈 · , · 〉X + 〈 · , · 〉Y and induced norm ‖ · ‖.

Consider again the nonautonomous Arrow–Hurwicz differ-

ential system
{

ẋ+∇xLt(x, λ) = 0X

λ̇−∇λLt(x, λ) = 0Y
(NAH)

and recall that (x, λ) : [0,+∞[ → X×Y is a (classical) so-

lution of (NAH) if (x, λ) ∈ C1([0,+∞[;X × Y ) such that

(NAH) is verified on [0,+∞[. Henceforth, we take for grant-

ed the existence of the solutions of (NAH).

In view of the convexity-concavity of the saddle functions

Lt, we immediately observe that for all (x, λ), (ξ, η) ∈ X ×
Y and t ≥ 0, it holds that

〈Tt(x, λ), (x, λ) − (ξ, η)〉 ≥ Lt(x, η) − Lt(ξ, λ). (1)

Utilizing the previous inequality relative to (NAH) gives the

following preliminary estimate.

Proposition II.1. Let (x, λ) : [0,+∞[→ X×Y be a solution

of (NAH). Then, for all (ξ, η) ∈ X × Y , it holds that

lim sup
t→+∞

∫ t

0

Lτ (x(τ), η) − Lτ (ξ, λ(τ)) dτ < +∞.

Proof. Let (ξ, η) ∈ X × Y . Taking the inner product with

(x(t), λ(t))−(ξ, η) in (NAH) and subsequently applying the

chain rule gives, for every t ≥ 0,

1

2

d

dt
‖(x(t), λ(t)) − (ξ, η)‖2

+ 〈Tt(x(t), λ(t)), (x(t), λ(t)) − (ξ, η)〉 = 0.

In view of inequality (1), we obtain

1

2

d

dt
‖(x(t), λ(t)) − (ξ, η)‖2

+Lt(x(t), η) − Lt(ξ, λ(t)) ≤ 0.
(2)

Integration over [0, t] yields2

1

2
‖(x(t), λ(t)) − (ξ, η)‖2 −

1

2
‖(x(0), λ(0))− (ξ, η)‖2

+

∫ t

0

Lτ (x(τ), η) − Lτ (ξ, λ(τ)) dτ ≤ 0.

Taking into account that ‖(x(t), λ(t))− (ξ, η)‖2 ≥ 0, we de-

duce
∫ t

0

Lτ (x(τ), η) − Lτ (ξ, λ(τ)) dτ

≤
1

2
‖(x(0), λ(0)) − (ξ, η)‖2.

(3)

Passing to the upper limit as t → +∞ entails

lim sup
t→+∞

∫ t

0

Lτ (x(τ), η) − Lτ (ξ, λ(τ)) dτ < +∞,

concluding the desired estimate.

2Throughout the section, we assume that t 7−→ Lt( · , η) − Lt(ξ, · ) is
continuous (and thus, integrable) for each (ξ, η) ∈ X × Y .

Remark II.2 (“No-regret condition”). Let us define, for every

t ≥ 0, the “regret function” Regrett : X × Y → R by

Regrett(ξ, η) =

∫ t

0

Lτ (x(τ), η) − Lτ (ξ, λ(τ)) dτ .

Given this definition, Proposition II.1 asserts that the solu-

tions of (NAH) verify, for all (ξ, η) ∈ X × Y , the so-called

“no-regret condition”

Regrett(ξ, η) ≤ O(t) as t → +∞,

suggesting that the average regret Regrett(ξ, η)/t is less than

or equal to zero as t → +∞; we refer to Sorin [20] for a re-

cent survey on no-regret algorithms.

The following preparatory result further characterizes the

limiting behavior of the convergent solutions of (NAH).

Proposition II.3. Let (x, λ) : [0,+∞[→ X×Y be a solution

of (NAH) and suppose that there exists a closed convex-

concave bifunction L∞ : X × Y → R such that for every

(ξ, η) ∈ X × Y ,

Lt( · , η)− Lt(ξ, · ) → L∞( · , η)− L∞(ξ, · )

uniformly on X × Y as t → +∞.

If (x̄, λ̄) ∈ X×Y is such that (x(t), λ(t)) → (x̄, λ̄) strongly

in X × Y as t → +∞, then, for all (ξ, η) ∈ X × Y ,

L∞(x̄, η) ≤ L∞(x̄, λ̄) ≤ L∞(ξ, λ̄).

Proof. Let (ξ, η) ∈ X ×Y . Successively dividing inequality

(3) by t > 0 and taking the upper limit as t → +∞ gives

lim sup
t→+∞

1

t

∫ t

0

Lτ (x(τ), η) − Lτ (ξ, λ(τ)) dτ ≤ 0.

On the other hand, since Lt( · , η)−Lt(ξ, · ) → L∞( · , η)−
L∞(ξ, · ) uniformly on X × Y and (x(t), λ(t)) → (x̄, λ̄)
strongly in X × Y as t → +∞, we immediately get

lim
t→+∞

(

Lt(x(t), η) − Lt(ξ, λ(t))
)

= L∞(x̄, η)− L∞(ξ, λ̄).

In view of the classical Cesàro property, we obtain

lim
t→+∞

1

t

∫ t

0

Lτ (x(τ), η) − Lτ (ξ, λ(τ)) dτ

= L∞(x̄, η)− L∞(ξ, λ̄)

and thus,

L∞(x̄, η)− L∞(ξ, λ̄) ≤ 0.

The above derivations being true for every (ξ, η) ∈ X × Y ,

we conclude that (x̄, λ̄) is a saddle point of L∞.

The previous result asserts that whenever there exists a

closed convex-concave bifunction L∞ such that the saddle

functions Lt tend towards L∞ (in the above sense) as t →
+∞, the limit of a convergent solution of (NAH) is neces-

sarily a saddle point of L∞. In the following sections, we

investigate the weak (ergodic) convergence properties of the

solutions of (NAH) in the case where the saddle functions Lt

tend towards their limit L∞ (in a sense to be made precise)

sufficiently fast as t → +∞.



III. WEAK ERGODIC CONVERGENCE

In this section, we investigate the weak ergodic conver-

gence properties of the solutions of (NAH). To this end, let us

consider the Cesàro average of a solution (x, λ) : [0,+∞[ →
X × Y of (NAH) defined by

(σ, ω) : ]0,+∞[ −→ X × Y

t 7−→
1

t

∫ t

0

(x(τ), λ(τ)) dτ .

Assuming that there exists a closed convex-concave bifunc-

tion L∞ : X×Y → R with a non-empty set of saddle points

S ×M such that for all (ξ, η) ∈ X × Y , the gap function

GAPLt−L∞
(ξ, η) = sup

µ∈Y

(

Lt(ξ, µ)− L∞(ξ, µ)
)

− inf
ν∈X

(

Lt(ν, η)− L∞(ν, η)
)

vanishes sufficiently fast as t → +∞, the following result

asserts that the Cesàro average (σ(t), ω(t)) of a solution of

(NAH) weakly converges, as t → +∞, towards an element

of S ×M . The arguments we use to prove this fact rely on

the Opial–Passty lemma; cf. Lemma A.2.

Theorem III.1. Let (σ, ω) : ]0,+∞[→ X×Y be the Cesàro

average of a solution of (NAH) and suppose that there exists

a closed convex-concave bifunction L∞ : X × Y → R with

a non-empty set of saddle points S ×M such that

∀(ξ, η) ∈ X × Y,

∫ ∞

0

GAPLτ−L∞
(ξ, η) dτ < +∞.

Then (σ(t), ω(t)) converges weakly, as t → +∞, to some

element (σ̄, λ̄) ∈ S ×M .

Proof. In order to apply the Opial–Passty lemma, let us first

show that for every (ξ, η) ∈ S×M , limt→+∞‖(x(t), λ(t))−
(ξ, η)‖ exists. Let (ξ, η) ∈ S×M and recall from inequality

(2) that for all t ≥ 0, we have

1

2

d

dt
‖(x(t), λ(t)) − (ξ, η)‖2 ≤ Lt(ξ, λ(t)) − Lt(x(t), η).

Upon defining GAPLt
: X × Y → R ∪ {+∞} by

GAPLt
(ξ, η) = sup

µ∈Y

Lt(ξ, µ)− inf
ν∈X

Lt(ν, η),

we immediately obtain

1

2

d

dt
‖(x(t), λ(t)) − (ξ, η)‖2 ≤ GAPLt

(ξ, η).

Integration over [s, t], for t ≥ s ≥ 0, yields

1

2
‖(x(t), λ(t)) − (ξ, η)‖2 ≤

1

2
‖(x(s), λ(s)) − (ξ, η)‖2

+

∫ t

s

GAPLτ
(ξ, η) dτ .

Consequently, the mapping

t 7−→
1

2
‖(x(t), λ(t)) − (ξ, η)‖2 −

∫ t

0

GAPLτ
(ξ, η) dτ

is non-increasing and bounded from below, implying that it

admits a limit as t → +∞. The latter is an immediate con-

sequence of the fact that for (ξ, η) ∈ S ×M , we have

GAPLt
(ξ, η) ≤ GAPLt−L∞

(ξ, η),

which, together with condition (Γ), implies that
∫ ∞

0

GAPLτ
(ξ, η) dτ < +∞.

In view of the above derivations,

lim
t→+∞

‖(x(t), λ(t)) − (ξ, η)‖ exists.

Let us now show that every weak sequential cluster point

of (σ(t), ω(t))t>0 belongs to the set S × M . Let (ξ, η) ∈
X × Y and observe again from inequality (2) that for every

t ≥ 0, it holds that

1

2

d

dt
‖(x(t), λ(t)) − (ξ, η)‖2 + L∞(x(t), η) − L∞(ξ, λ(t))

≤ GAPLt−L∞
(ξ, η).

Integration over [0, t] gives

1

2
‖(x(t), λ(t)) − (ξ, η)‖2 −

1

2
‖(x(0), λ(0)) − (ξ, η)‖2

+

∫ t

0

L∞(x(τ), η) − L∞(ξ, λ(τ)) dτ

≤

∫ t

0

GAPLτ−L∞
(ξ, η) dτ .

(4)

Taking into account that ‖(x(t), λ(t))−(ξ, η)‖2 ≥ 0 and sub-

sequently dividing by t > 0 yields

1

t

∫ t

0

L∞(x(τ), η) − L∞(ξ, λ(τ)) dτ

≤
1

2t
‖(x(0), λ(0))− (ξ, η)‖2

+
1

t

∫ t

0

GAPLτ−L∞
(ξ, η) dτ .

Applying Jensen’s inequality, as L∞( · , η) and −L∞(ξ, · )
are both convex, it follows with condition (Γ) that

L∞(σ(t), η) − L∞(ξ, ω(t)) ≤
C

t
,

where

C =
1

2
‖(x(0), λ(0)) − (ξ, η)‖2

+

∫ ∞

0

GAPLτ−L∞
(ξ, η) dτ .

Passing to the upper limit as t → +∞ entails

lim sup
t→+∞

(

L∞(σ(t), η) − L∞(ξ, ω(t))
)

≤ 0.

Suppose now that (σ(tn), ω(tn)) ⇀ (σ̄, ω̄) weakly in X×
Y , as n → +∞, for a sequence tn → +∞. Substituting t
by tn in the above inequality gives

0 ≥ lim sup
n→+∞

(

L∞(σ(tn), η)− L∞(ξ, ω(tn))
)

≥ lim inf
n→+∞

L∞(σ(tn), η) + lim inf
n→+∞

(

− L∞(ξ, ω(tn))
)

≥ L∞(σ̄, η)− L∞(ξ, ω̄)



thanks to the weak lower semi-continuity of L∞( · , η) and

−L∞(ξ, · ) as L∞ is a closed convex-concave bifunction so

that L∞( · , η) and −L∞(ξ, · ) are both convex and lower

semi-continuous. The above inequalities being true for every

(ξ, η) ∈ X × Y , we conclude that (σ̄, ω̄) ∈ S ×M .

The weak convergence of (σ(t), ω(t)) as t → +∞ is now

readily deduced from the Opial–Passty lemma, cf. Lemma

A.2, applied to the set S ×M .

Remark III.2. Under the hypotheses of Theorem III.1, we ob-

serve that the Cesàro average (σ, ω) : ]0,+∞[ → X × Y of

a solution of (NAH) obeys, for every (ξ, η) ∈ S × M , the

asymptotic estimate

L∞(σ(t), η) − L∞(ξ, ω(t)) = O
(1

t

)

as t → +∞.

This estimate is particularly well known in the study of the

autonomous Arrow–Hurwicz differential system; see, e.g.,

Niederländer [19].

Remark III.3. We note that condition (Γ) is strongly related

to the summability estimate

∀(ξ, η) ∈ gphT∞,

∫ ∞

0

GTτ
(ξ, η) dτ < +∞

proposed by Attouch et al. [13] for some maximally mono-

tone operator T∞. The above estimate thereby relies on the

so-called Brézis–Haraux function GT : X×X → R∪{+∞}
associated with a maximally monotone operator T which is

defined by

GT (ξ, η) = sup
(µ,ν)∈gphT

〈ξ − µ, ν − η〉X .

We also refer to Furuya et al. [12] for yet another summa-

bility condition introduced in the context of nonautonomous

evolution equations governed by subdifferential operators.

IV. WEAK CONVERGENCE

In this section, we focus on the weak convergence proper-

ties of the solutions of (NAH). In addition to the integrability

estimate (Γ), let us assume that the limiting closed convex-

concave bifunction L∞ : X × Y → R is such that for all

(x̄, λ̄) ∈ S ×M and (ξ, η) /∈ S ×M ,

L∞(x̄, η) < L∞(x̄, λ̄) < L∞(ξ, λ̄).

Utilizing the above inequalities, the following result states

that the solutions (x(t), λ(t)) of (NAH) admit a weak limit

as t → +∞. The weak convergence result essentially relies

on the Opial lemma; cf. Lemma A.1.

Theorem IV.1. Let (x, λ) : [0,+∞[ → X×Y be a solution

of (NAH) and suppose that there exists a closed convex-

concave bifunction L∞ : X × Y → R with a non-empty set

of saddle points S ×M such that

∀(ξ, η) ∈ X × Y,

∫ ∞

0

GAPLτ−L∞
(ξ, η) dτ < +∞.

Assume, in addition, that the bifunction L∞ is such that for

all (x̄, λ̄) ∈ S ×M and (ξ, η) /∈ S ×M ,

L∞(x̄, η) < L∞(x̄, λ̄) < L∞(ξ, λ̄).

Then (x(t), λ(t)) converges weakly, as t → +∞, to some

element (x̄, λ̄) ∈ S ×M .

Proof. In view of condition (Γ), we immediately obtain from

the proof of Theorem III.1 that for all (ξ, η) ∈ S ×M ,

lim
t→+∞

‖(x(t), λ(t)) − (ξ, η)‖ exists.

Hence, in order to apply the Opial lemma, it suffices to show

that every weak sequential cluster point of (x(t), λ(t))t≥0

belongs to the set S × M . Let (ξ, η) ∈ S × M and recall

from inequality (4) that for all t ≥ 0, we have

1

2
‖(x(t), λ(t)) − (ξ, η)‖2 −

1

2
‖(x(0), λ(0))− (ξ, η)‖2

+

∫ t

0

L∞(x(τ), η) − L∞(ξ, λ(τ)) dτ

≤

∫ t

0

GAPLτ−L∞
(ξ, η) dτ .

Utilizing again the fact that ‖(x(t), λ(t))− (ξ, η)‖2 ≥ 0, we

obtain
∫ t

0

L∞(x(τ), η) − L∞(ξ, λ(τ)) dτ

≤
1

2
‖(x(0), λ(0))− (ξ, η)‖2

+

∫ t

0

GAPLτ−L∞
(ξ, η) dτ .

In view of condition (Γ), it follows that
∫ t

0

L∞(x(τ), η) − L∞(ξ, λ(τ)) dτ ≤ C,

where

C =
1

2
‖(x(0), λ(0)) − (ξ, η)‖2

+

∫ ∞

0

GAPLτ−L∞
(ξ, η) dτ .

The above majorization being valid for every t ≥ 0, taking

the supremum with respect to t gives
∫ ∞

0

L∞(x(τ), η) − L∞(ξ, λ(τ)) dτ < +∞.

Suppose now that (x(tn), λ(tn)) ⇀ (x̄, λ̄) weakly in X×
Y , as n → +∞, for a sequence tn → +∞. Since

L∞(x, η) − L∞(ξ, λ) ∈ L1([0,+∞[;R),

there must be a subsequence (tnk
)k∈N of (tn)n∈N such that

limk→+∞

(

L∞(x(tnk
), η) − L∞(ξ, λ(tnk

))
)

= 0. Conse-

quently,

0 = lim
k→+∞

(

L∞(x(tnk
), η) − L∞(ξ, λ(tnk

))
)

≥ lim inf
k→+∞

L∞(x(tnk
), η) + lim inf

k→+∞

(

− L∞(ξ, λ(tnk
))
)

≥ L∞(x̄, η)− L∞(ξ, λ̄),

where we again utilized the weak lower semi-continuity of

L∞( · , η) and −L∞(ξ, · ). On the other hand, since (ξ, η) ∈
S × M , it holds that L∞(x̄, η) − L∞(ξ, λ̄) ≥ 0. Hence,



(x̄, λ̄) ∈ X×Y is such that L∞(x̄, η)−L∞(ξ, λ̄) = 0. Ow-

ing to the fact that (ξ, η) is a saddle point of L∞, we get

L∞(ξ, λ̄) = L∞(ξ, η) = L∞(x̄, η).

In view of condition (Σ), this clearly implies that (x̄, λ̄) ∈
S ×M , i.e., (x̄, λ̄) is a saddle point of L∞.

The weak convergence of (x(t), λ(t)) as t → +∞ is now

an immediate consequence of the Opial lemma, cf. Lemma

A.1, applied to the set S ×M .

Remark IV.2. We note that condition (Σ) is, of course, triv-

ially satisfied whenever the set S×M is non-empty such that

the bifunction L∞ is strictly convex in its first argument and

strictly concave in its second argument. A less conservative

assumption that may be used to deduce the weak convergence

of the solutions of (NAH) is the following one proposed by

Chbani and Riahi [17]:






















If (x̄, λ̄) ∈ X × Y is a saddle point of L∞ such that

L∞(x̄, η) = L∞(x̄, λ̄) = L∞(ξ, λ̄)

for some (ξ, η) ∈ X × Y , then (ξ, η) is a saddle

point of L∞.

We also refer to Rockafellar [6] and Venets [15] for similar

conditions that appeared in the study of the autonomous Ar-

row–Hurwicz differential system.

Remark IV.3. By Theorem IV.1, in order to prove the weak

convergence of the solutions of (NAH), it suffices to show

that the weak sequential cluster points of (x(t), λ(t))t≥0 be-

long to the set S×M . A key tool to ensure this is the concept

of demipositivity, first developed by Bruck [21] for mono-

tone operators, and later extended by Chbani and Riahi [17]

for monotone bifunctions. We refer the reader to Pazy [22],

[23] (see also Peypouquet and Sorin [24]) for an exposition

of conditions that imply demipositivity.

V. NUMERICAL EXPERIMENTS

In this section, we provide two simple, yet representative,

numerical experiments that allow for a direct exposition of

our main results.

Example 1 (Weak ergodic convergence). Let X,Y = R and

consider, for every t ≥ 0, the convex-concave and continu-

ously differentiable saddle function

Lt : R× R −→ R

(x, λ) 7−→ e−t(x2 − λ2)/2 + (λ− 1)(x− 1).

Clearly, the limiting closed convex-concave bifunction reads

L∞(x, λ) = (λ− 1)(x− 1) with S×M = {(1, 1)}. The as-

sociated gap function reduces to

GAPLt−L∞
(ξ, η) = e−t(ξ2 + η2)/2.

Hence, for every (ξ, η) ∈ R× R, we obtain
∫ ∞

0

GAPLτ−L∞
(ξ, η) dτ < +∞

so that condition (Γ) is satisfied. Figure 1 illustrates the tra-

jectories of a solution (x(t), λ(t)) of (NAH) together with its

Cesàro average (σ(t), ω(t)). The initial data of the (NAH)

solution is chosen as (x(0), λ(0)) = (2, 1).

Example 2 (Weak convergence). Let X,Y = R and consider

now, for every t ≥ 0, the convex-concave and continuously

differentiable bifunction

Kt : R× R −→ R

(x, λ) 7−→ Lt(x, λ) + (x− 1)2/2− (λ− 1)2/2

with K∞(x, λ) = L∞(x, λ) + (x− 1)2/2− (λ− 1)2/2 and

S ×M = {(1, 1)}. For every (ξ, η) ∈ R× R, we have

GAPKt−K∞
(ξ, η) = GAPLt−L∞

(ξ, η)

so that condition (Γ) holds. In addition, as K∞ is strongly

convex-concave, condition (Σ) is verified. The trajectories of

a solution (x(t), λ(t)) of (NAH) along with its Cesàro aver-

age (σ(t), ω(t)) are depicted in Figure 2. The initial data is

again set to (x(0), λ(0)) = (2, 1).

APPENDIX

We present here some auxiliary results which are used in

the asymptotic analysis of the (NAH) differential system.

Let us first recall the continuous version of the classical

Opial lemma; cf. Opial [25].

Lemma A.1 (Opial). Let X be a real Hilbert space and

let x : [0,+∞[ → X be such that there exists a non-empty

subset S of X which verifies

(i) for all ξ ∈ S, limt→+∞‖x(t)− ξ‖X exists;

(ii) ∀tn → +∞ such that x(tn) ⇀ x̄ weakly in X , it holds

that x̄ ∈ S.

Then x(t) converges weakly, as t → +∞, to some element

x̄ ∈ S.

For the following ergodic variant of the Opial lemma, the

reader is referred to Passty [26].

Lemma A.2 (Opial–Passty). Let X be a real Hilbert space,

let S be a non-empty subset of X , and let x : [0,+∞[ → X
be continuous. For every t > 0, set

σ(t) =
1

t

∫ t

0

x(τ) dτ

and assume that

(i) for all ξ ∈ S, limt→+∞‖x(t)− ξ‖X exists;

(ii) ∀tn → +∞ such that σ(tn) ⇀ σ̄ weakly in X , it holds

that σ̄ ∈ S.

Then σ(t) converges weakly, as t → +∞, to some element

σ̄ ∈ S.
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