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ABSTRACT. In a real Hilbert space setting, we investigate the asymptotic
behavior of the solutions of the classical Arrow—Hurwicz differential system
combined with Tikhonov regularizing terms. Under some newly proposed con-
ditions on the Tikhonov terms involved, we show that the solutions of the
regularized Arrow—Hurwicz differential system strongly converge toward the
element of least norm within its set of zeros. Moreover, we provide fast as-
ymptotic decay rate estimates for the so-called primal-dual gap function and
the norm of the solutions’ velocity. If, in addition, the Tikhonov regularizing
terms are decreasing, we provide some refined estimates in the sense of an ex-
ponentially weighted moving average. Under the additional assumption that
the governing operator of the Arrow—Hurwicz differential system satisfies a re-
verse Lipschitz condition, we further provide a fast rate of strong convergence
of the solutions toward the unique zero. We conclude our study by deriving
the corresponding decay rate estimates with respect to the so-called viscosity
curve. Numerical experiments illustrate our theoretical findings.

1. INTRODUCTION

Let X and Y be real Hilbert spaces endowed with inner products (-, -)x, (-, - )y
and associated norms || - || x, || - ||y. Consider the minimization problem

(P) min {f(x) : Az = b},

where f: X — R is a convex and continuously differentiable function, A: X — Y
a linear and continuous operator, and b € Y. We assume that the (closed and
convex) set of optimal solutions of (P) is non-empty, i.e.,

S:={xeC: f(z)=infc f} #0

with C' := {z € X : Az = b} denoting the feasible set of (P). Recall that (P) admits
an optimal solution whenever C' is non-empty and, for instance, f is coercive, that
is, lim”z”X‘)J’,oo f(CL') = +o00.

Let us associate with (P) the Lagrangian

L:XxY —R
(2, A) — f(z) + (N, Az — b)y
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which, by construction, is a convex-concave and continuously differentiable bifunc-
tion. Classically, the convex minimization problem (P) admits an equivalent repre-
sentation in terms of the saddle-value problem

in sup L(z, \).
g pup £l

It is well known (see, e.g., Ekeland and Témam [21]) that # € X is an optimal
solution of (P), and A € Y a corresponding Lagrange multiplier, if and only if
(Z,\) is a saddle point of L, that is,

L(Z,\) < L(Z,\) < L(z,\) Y(z,\) € X xY.

Equivalently, (Z,\) € X x Y is a saddle point of L if and only if (Z, \) satisfies the
system of primal-dual optimality conditions

Vix)+A*A=0

Axr—b=0
with Vf : X — X denoting the gradient of f, and A* : Y — X the adjoint operator
of A. Throughout, we denote by M C Y the (possibly empty, closed, and convex)
set of Lagrange multipliers associated with (P). Recall that a Lagrange multi-

plier (and thus, a saddle point of L) exists, for example, whenever the constraint
qualification

b e sri A(X)

is verified. Here, for a convex set K C Y, we denote by

sriK = {x e K: U u(K — ) is a closed linear subspace of Y}

its strong relative interior; we refer the reader to Bauschke and Combettes [12] (see
also Bot [13]) for a detailed exposition of constraint qualifications.
In this work, we investigate the nonautonomous differential system

{;b +Vf(z)+ AN +e(t)x =0

AHT .
( ) A+b—Az+e(t)A=0

relative to the convex minimization problem (P). The (AHT) evolution system es-
sentially combines the classical “generalized steepest descent dynamics” introduced
by Arrow and Hurwicz [1] (see also Arrow et al. [2] and Kose [26]) with Tikhonov
regularizing terms; cf. Tikhonov and Arsénine [32]. Here, ¢ : [tg, +00[ — ]0, +00]
denotes, for some tg > 0, the Tikhonov regularization function which is assumed to
be continuously differentiable such that
t_1i+moo e(t) =0.

In view of this regularization, the (AHT) differential system is governed by the
perturbed operator

T, :=T+¢e(t)1d,
where
T:XxY —XXxY
(2, A) — (VoL(z, \), —VaL(z, \))
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is the maximally monotone operator associated with the “saddle function” L; see,
e.g., Rockafellar [30, 31]. Noticing that the zeros of T' are nothing but the saddle
points of L, i.e.,

zer’T =S x M,

and the Tikhonov regularization function £(t) is vanishing as t — +o0o0, we may
expect that the solutions (z(t), A(t)) of (AHT) converge, as t — +00, toward an
element in S x M.

As it turns out, the asymptotic behavior of the solutions of (AHT) depends
critically on the rate at which e(¢) tends to zero as ¢ — 400. In the particular case
when £(t) vanishes “sufficiently fast” as ¢ — 400, in the sense that

o0
/ e(r)dr < +o0,
to
the solutions of (AHT) are known to inherit the asymptotic properties of the ones
of the classical Arrow—Hurwicz differential system; see, e.g., the general results in
Attouch et al. [6] (see also Cominetti et al. [19]). As such, we may only expect the
weak ergodic convergence of the solutions of (AHT) toward their asymptotic center
in S x M; see Niederldnder [27, 28] for the corresponding results on the classical
Arrow-Hurwicz evolution system.

On the other hand, if the Tikhonov regularization function e(¢) vanishes “slowly”
as t — 400, in the sense that

o0
/ e(r)dr = +o0,
to

the solutions of (AHT) are asymptotically dominated by the regularizing terms.
In this case, the solutions of (AHT) are known to be strongly convergent toward
the element of least norm in S x M, provided that £(t) satisfies, in addition, the
“finite-length property” (see Cominetti et al. [19])

/ le(T)|dr < oo,

to

or the “limiting condition” (see Bot and Nguyen [14])

lim M—

t—+o0 E(t)

We note that the strong convergence has been previously established under the
assumption that e(¢) is decreasing with

E(t)

too £2(1)

)

see, e.g., Israel Jr. and Reich [24], Attouch and Cominetti [8] (see also Browder
[17] and Reich [29]). Ever since, the subject of combining first- and second-order
dynamics with Tikhonov regularizing terms has gained significant attention. We
only mention here the recent works of Battahi et al. [10, 11], Bot, and Nguyen [14]
in the context of first-order differential systems, and Attouch and Czarnecki [9],
Attouch et al. [5, 7] for earlier studies on second-order evolution systems.

In this work, we focus on the derivation of fast convergence rates for the solu-
tions of the (AHT) differential system. Under the assumption that e(¢) is twice
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continuously differentiable such that there exists t4 >ty with
2 .
e“(t)+e(t) >0
2e(t)e(t) +£(t) <0

(
we show that the solutions (z(t), A(¢)) of (AHT) strongly converge, as t — 400, to
the element of least norm in S x M, i.e.,

i (2(8), A(1)) = projicas (0,0).

Moreover, we prove that the solutions (x(t), A(t)) of (AHT) obey, for every (z,\) €
S x M, the asymptotic estimates

1(&(8), A1) + (6 ((@(t), A(t)) — (&, N)]|* = O (e +2(1)) as t — +oo;
e(t)(L(z(t),\) — L(Z,A(1))) = O(e %) 4 £2(t)) as t — +oo;

T (x(t), A1) — T(Z, N> = O(e™2!) 1-£2(t)) as t — +o0;

1(@(8), A))]|? = O(e 2 +£%(1)) as t — +o0,

with the auxiliary function p : [tg, +00[ — R being defined by
t
olt) = / £(r) dr.
to
The latter essentially recovers the decay rate estimate
1(@(t), A@®)1> = O(e 2 +|&(¢)]) as t — +oo

recently obtained by Bot and Nguyen [14] in the context of general monotone opera-
tor flows with Tikhonov regularization. If, in addition, the Tikhonov regularization
function £(t) is decreasing, we show that the following refined estimate holds:

t
1 .
- / p(t) ; 24 0.
t—)lIJPooe t4 ¢ 5(7_) ||(I(T), A(T))H =T

In the particular case () = 1/t with tp > 0, the above estimate reduces to
t
lim 1/ (@), A2 dr < +oc,
t=too t [y
which suggests a fast decay of the quantity t||((t), A(t))||? as t — +oc0 in the sense
of an “exponentially weighted moving average”. Moreover, under the assumption
that there exists oo > 0 such that for every (z, ), (§,m) € X x Y, it holds that

(L) 1T (2, A) = T n)l* > all(z,A) = (€ ),

we infer that the solutions (z(t), A(t)) of (AHT) obey, for (z,\) € S x M, the decay
rate estimate

1(z(t), A(t)) — (&, N[> = O(e2PW) 1 £2(t)) as t — +oo.

We conclude our work by deriving similar asymptotic estimates for the (AHT)
solutions with respect to the viscosity curve (x4, At) which is governed by the unique
zero of the e(t)-strongly monotone operator T}, viz., for every t > to,

T(It, )\t) + E(t)($t, )\t) = (0, 0)
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In particular, we show that the solutions (z(t), A(t)) of (AHT) obey the estimates
1), A®)) + () ((@(t), A1) = (26, M) [P = O(e720 +3(t)) as t — +oo;
IT (@), A1) = T A2 = O(e=240) 1 e2(1)) as t — +ox,

relative to the viscosity curve (z¢, A:). If, moreover, T verifies condition (L), we
have the following asymptotic estimate:

(@ (), A(t)) — (¢, A)[|> = O(e™ ) +£2(¢)) as t — +o0.

Numerical experiments on a simple yet representative example illustrate the above
theoretical findings.

2. PRELIMINARIES ON TIKHONOV REGULARIZATION

Let X x Y be endowed with the Hilbertian product structure (-, -) = (-, -)x +
(-, )y and associated norm | -||. Consider now, for each ¢ > ¢y, the regularized
Lagrangian

Li: X xY —R
e(t
(2,0) 7 Ll ) + S (e — 1A

relative to the convex minimization problem (P). Observing that L. is e(t)-strongly
convex-concave, it follows that L; admits, for each ¢t > tg, the unique saddle point
(.’L’t,)\t) e X xY,ie,

Lt(l't,)\) < Lt((Et, )\t) < Lt((E, )\t) V(.’II,)\) c X xY.
Equivalently, the system of primal-dual optimality conditions reads

Vf((bt) + A*)\t + E(f)i[]t =0
Az —b—e(t)) = 0.
In view of the latter, we immediately observe that, for each ¢t > ¢y, the unique zero
of the £(t)-strongly monotone operator
T, : X XY —XxY
(Ia A) — (ViLt(Ia A)v _v)\Lt(xv )‘))7

that is the “generator” of the (AHT) differential system, is precisely the saddle point
of L, that is,
Ti(ze, ) = (0,0) <=
(¢, At) = argminmaxy .y L.
Let us start our discussion with a preliminary result on the asymptotic behavior
of the so-called viscosity curve (z:, A\¢) as t — +oo. The result is adapted from

Bruck [18, Lemma 1] (see also Attouch [4], Attouch and Cominetti [8], Cominetti
et al. [19, Lemma 4]).

Lemma 2.1. Let S x M be non-empty and let (x¢, \¢) = argminmaxy .y Ly for
each t > tg. Then the following assertions hold:

(i) t — (x¢, A) is bounded on [to, +oo] and
(@2, A < lIprojssxar (0,0)[ -V = to;
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(i) it holds that
lim (Ita A75) = prOjSXM(Oa O)

t——+o0
Proof. (i) For eacht > tg, let (x4, \;) = argminmax y .y L; and take (Z,\) € Sx M.
Using that (z, A) is the saddle point of L;, we have

0 Z Lt($t, A) — Lt(if,)\t)
(2.1) - e(t)

= L@, A) = L@, M) + == ([ AP = 1@ )]).

On the other hand, (7, \) is a saddle point of L so that

L(.It, A) - L(f, >\t) Z 0.
Combining the above inequalities and subsequently dividing by £(t)/2 yields
1@, M1 = Nl (e, A%

The above inequality being true for every (Z,\) € S x M, we arrive at the desired
estimate.

(ii) Let (z,\) € X xY and let (Z,\) € X xY be a weak sequential cluster point of
(24, \)e>1,, that is, there exists a sequence t,, — +oo such that (z,, A, ) — (%, \)
weakly in X X Y as n — 4o00. Substituting ¢ by ¢, in inequality (2.1) yields

) I > ) - Do) + 02

> L(zy,,A) — L(z, A,y ).

|| (‘Ttn7 )\tn)Hz

Observing that e(t,,) — 0 as n — +o0o, we obtain

0 > limsup (L(z¢,,A) — L(z, Ar,,))

n—-+o0o

> liminf L(z,, ) 4+ liminf (—L(z, At,))

i
n—-+oo n—-+oo

> L(z,)\) — L(z,\)

thanks to the weak lower semi-continuity of L(-,\) and —L(x, -), as L(-,\) and
—L(x, -) are both convex and lower semi-continuous. The above inequalities being
true for every (z,\) € X x Y, we conclude that (z, ) is a saddle point of L, that
is, (z,\) € S x M.

On the other hand, using (i) and owing to the weak lower semi-continuity of the
norm || - ||, we obtain

[Projsscar (0, 0)]| > iminf [z, v, )| > 112, V],

implying that (Z, ) = projg, (0, 0). Consequently, projg. (0, 0) is the only pos-
sible weak sequential cluster point of (x;, A)i>y, so that (z;,Ar) = projgyas(0,0)
weakly in X x Y as t — +o00. Upon relying on (i) again, we have

IProjssx ar (0, 0)]| = limsup || (z¢, Ad) |
t—4o0
> timint | (2, )| > [rojs s (0, 0)]
and thus,
(@e, M)l = [[Projgar (0, 0)||.

lim ||
t——+oo
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Now, as we have both (z¢, \t) = projg,as(0,0) weakly in X x Y and |[(x¢, A)|| —
lprojgyar(0,0)|| as t — 400, we classically deduce

tiigloo(xt’ /\t) = prOijM(Oa 0)7
concluding the result. O

Remark 2.2. In view of the above result, we readily observe that (2, At) obeys, for
every (Z,\) € S x M, the asymptotic estimate

L(z¢, N) — L(Z, M) = O(e(t)) as t = +o0.
We show in Section 4 that a comparable estimate holds with respect to the solutions
of the (AHT) differential system.

Remark 2.3. We note that the strong convergence of (z, A;) toward projg, (0, 0)
as t — 400 may also be deduced from the perturbed operator
T, =T +¢(t)Id

by using the graph-closedness property of the maximally monotone operator 7" with
respect to the weak-strong topology; see, e.g., Brézis [16, Theorem 2.2|, Bauschke
and Combettes [12, Theorem 23.44].

The following result, adapted from Attouch [4, Proposition 5.3] (see also Attouch
and Cominetti [8], Torralba [33, Lemma 5.2], Attouch et al. [5, Lemma 2]), provides
some differential information on the viscosity curve (z¢, A¢).

Lemma 2.4. Let (z¢,\:) = argminmaxy .y L: for each t > tg. Then t — (x4, \r)
is Lipschitz continuous on the compact intervals of [to, +o0o[ and

— ) (e, M), (e, M) = e®)]| (@, AP ace. t > to.

Proof. Let (x¢, A¢) = argminmaxy .y L; and (x5, \s) = argminmaxy .y Ls for some
t > s > to. Utilizing that L, is £(¢)-strongly convex-concave, we have

t
02 Lufa A~ LaCa M)+ S, A) = (20, )P

= L(x, As) — L(zs, A\t) + (@) {(ze, A\t), (xe, M) — (x5, As))-

Similarly, L, is €(s)-strongly convex-concave so that

0> L(xs, At) — Ly, As) +e(8){(ws, As), (s, As) — (T4, Ae))-
Combining the above inequalities gives

0= (e(t)(@e, Ae) — e(s)(@s, As), (@, Ae) — (25, As))-
Equivalently, we have
0> (e(t) — &(8)){(we, Ae), (@1, Ae) — (w5, As))
+e(9)ll(e, Ae) = (@5, As)|1%.

Since (t) is continuously differentiable, it is Lipschitz continuous on the compact
intervals of [tg, +o0o[. In view of the above inequality, it readily follows that (x:, A)
is Lipschitz continuous on the compact intervals of [ty, +00[ as well and thus, differ-
entiable almost everywhere. Upon dividing inequality (2.2) by (t — s)? and letting
s — t, for almost every ¢ > tg, we obtain

0> &(t)((we, M), (6, Ae)) + (O]l (&6, Ao) 1%,
concluding the desired inequality. O

(2.2)
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Remark 2.5. In view of the Cauchy—Schwarz inequality, we readily deduce from the
above result that (4, A¢) obeys the asymptotic estimate

e Al = o(%) as > 400,

Let us next investigate the viscosity curve under the additional assumption that

e(t) is twice continuously differentiable such that

lim e(t) =0.

t——+o0
The following result provides a fast decay rate estimate on the quantity e(t)|| (&, A¢)||?
in the sense of an “exponentially weighted moving average”.

Lemma 2.6. Let S x M be non-empty and let (v¢, \) = argminmaxy,y Ly for
each t > tg. Suppose that there exists t4 > to such that

e2(t) +£(t) >0
. . Vt >ty
2e(t)e(t) +&(t) <0
Then, as t — 400, it holds that
t
e~20() / ) (1) || (7, Ar)[|2 dr = O(e7 2 4 £2(1)).
ty

Proof. Let (z¢, \;) = argminmax y .y Lt and take (Z,\) € SxM. Let o : [to, +-00[ —
R be defined by o(t) = e%(t) + £(t) such that &(t) = 2¢(t)é(t) + &(t). In view of the
system of primal-dual optimality conditions, for almost every ¢t > t(, we have?

d .
(S ). e he)) + Ol A2 + S0 S

Since £(t) is twice continuously differentiable, we readily obtain

%(é(t)ll(xt, AZ) + (@) (@l (e A1) + (@)l (e, Ao 1P

(5T, 0 30) = Dl =0

(e, A)l* =0

N =

Multiplying by e2?®) and taking into account that 7" is monotone gives

(200 &), A1) + €20 e(2) G, A0)]1

N =
&l

o0 T 22 <0

Integrating over [t ,t] and observing that ¢(¢) < 0 for all ¢ > ¢, we find that there
exists K > 0 such that

. t t X
e Al + e [0 e, A dr < K 0.

ty

n the following, we assume that ¢ — T'(x¢, A\¢) is Lipschitz continuous on the compact in-
tervals of [to, +oo[, implying that it is differentiable almost everywhere. In Section 3, we provide
conditions on 7" which justify this assumption.
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On the other hand, multiplying inequality (2.1) by €(¢) and subsequently adding
it to the above inequality yields

g 52 _
(0Ll ) — L@ M) + 2 e a2~ T (2 D)

t
+ e %0 / e e(r)|| (@7, Ar) [P dr < K2/
tt

Noticing that (Z,\) is a saddle point of L and using the fact that o(t) > 0 for all
t > ty, we obtain

t . 52 (t) —
o200 / D (1) (@7, Ar)|P dr < K20 — @ I,
t4
concluding the desired estimate. O

Let us conclude this section with asymptotic decay rate estimates on the viscosity
curve (x4, A¢) and its derivative given the additional assumption that there exists
a > 0 such that for every (x, ), (§,n) € X x Y, it holds that

(L) 1T (2, A) = T n)l* = all(z, ) — ()l

Condition (L) may be interpreted as a particular instance of an error-bound or
strong metric subregularity condition (see, e.g., Artacho and Geoffroy [3], Bolte et
al. [15]) which clearly implies that T admits at most one zero.

Lemma 2.7. Let S x M be non-empty, let (x, \;) = argminmaxy,y Ly for each
t > to, and suppose that T : X XY — X XY satisfies condition (L) with « > 0.
Then, for (Z,\) € S x M, it holds that

1
2 .
(e, A2 = (9(7(] - 52@)) as t — +00;

2
|($ta/\t)_(:fa/_\)|2_o(%§2)(t)) a5 ¢ = +00;
s of EOF Y -
iAo = o ) ast o o

Proof. For each t > tg, let (4, \{) = argminmaxy .y L; and take (Z,\) € S x M.
In view of the system of primal-dual optimality conditions, for every ¢t > tg, it
holds that

IT(0,0)|1> = [T (1, Ae) — T(0,0) + £(t) (e, M) ||?
> ||T (1, M) = T(0,0)]12 + €2 ()| (e, M) ||
> (a+e%(t)) (e, AP,

where the first inequality follows from the monotonicity of T" while the second one
follows from condition (L), concluding the first estimate.

Again, by virtue of condition (L) and the system of primal-dual optimality con-
ditions, for every t > tg, we have

52@)”(557 5‘)”2 = |T(zt, \e) — T(Z, \) + () (e, N¢) — (7, 5\))”2
> (a+e2())[l(ze, \e) — (T, N)]|
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Successively dividing by £2(¢) and passing to the upper limit as ¢t — +o0o gives the
second estimate.

Consider now (¢, ;) = argminmax .,y Ly and (x5, \s) = argminmax .y Ls
for some t > s > to. Utilizing once again condition (L), we have

HT(‘TD )‘t) - T(CL‘S, )‘S)”2 2 O‘H(xtv )‘t) - (‘Tsv )‘S)”2'
Upon dividing by (¢t — s)? and letting s — ¢, for almost every ¢ > tq, we obtain

2 .
T(ae )| 2 all, A

d

|5

On the other hand, differentiating the system of primal-dual optimality conditions
yields, for almost every t > ty,

d Ly .
&T((Et, )\t) + E( )(.’L’t, )\t) + E(f)(.’l]t, )\t) =0.

Consequently, we have

PN MNP = | 5T A + (), )|

- Hdt
> HET(“’ At)H2 +22(8)|| (@, Ao)||?
> (a+ (1)) | (e, o)1,

where we again utilized the monotonicity of 7. Combining the above estimates
entails

O 70,02 > (0 -+ <20) I, A0)1?
e 7 > £ At

concluding the result. O

Remark 2.8. We note that similar estimates can be derived under the more general
assumption that the perturbed operator Ty = T + £(¢) Id is such that there exists
a: [tg, +oo] — ]0, 400 verifying, for every (x,\), (&,17) € X x Y and t > o,

T (2, A) = To(& n)lI* = a)(z,A) — (& n)]*
We leave the details to the reader.

3. THE (AHT) DIFFERENTIAL SYSTEM

In the following, we presuppose that

1) f: X — R is convex and continuously differentiable;
Vf: X — X is Lipschitz continuous on the bounded subsets of X;

(A
(A2)
(A3) A: X — Y is linear and continuous, and b € Y7
(Ad) €

¢ [to, +00[ — |0, +00[ is continuously differentiable such that
t_li+moo e(t) =0.

Consider again the nonautonomous differential system?
{j: + Vf(x)+ A A +e(t)xr =0

AHT :
(AHT) Atb—Az+e(t)A=0

2In view of the above assumptions, we readily observe that the governing operator T': X XY —
X xY of the (AHT) differential system is Lipschitz continuous on the bounded subsets of X x Y.
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with initial data (zg, \g) € X x Y. Throughout, we assume that (AHT) admits,
for each (zg,A9) € X x Y, a unique (classical) solution, that is, a continuously
differentiable function (z, ) : [to, +0o[ — X X Y which verifies (AHT) on [tg, +00]
with (z(to), A(to)) = (z0, \o) for some ty > 0; see, e.g., Haraux [23]. We refer the
reader to Crandall and Pazy [20], Furuya et al. [22], and Kenmochi [25] for the
respective results on nonautonomous evolution equations governed by maximally
monotone operators.
Consider again, for each t > tg, the regularized Lagrangian

L;: X xY —R

(x,\) — L(z,\) + ?(

(1% = 1IAl15)

associated with the convex minimization problem (P). In view of the e(t)-strong
convexity-concavity of the saddle function L;, we immediately obtain that for every
(x,N),(&,n) € X xY and t > tp, it holds that

(T, A), (2, A) = (&m)) = L(x,m) — Li (€, A)

3.1
. + )3 - €

Utilizing the above inequality relative to the (AHT) evolution system gives the
following preliminary estimates with p : [to, +00[ — R being defined by

Proposition 3.1. Let S x M be non-empty and let (z,\) : [tg, +0o] = X X Y be
a solution of (AHT). Then t— (z(t), A(t)) is bounded on [tg, +oc[. Moreover, for
every (Z,\) € S x M, it holds that

lim e *® /t e”™) (L(z(7), \) — L(z,A(1))) dT < +00;

t——+o0 to

t
Jim e_”(t)/ e”(T)%T)|\($(T),/\(T))||2d7'<+oo.
to

t—+oo

Proof. Let (Z,A) € S x M and define ¢ : [to, +oo[ — R by ¢(t) = [|(z(t), A(t)) —
(Z,\)]|?/2. Taking the inner product with (x(t), \(t)) — (z,A) in (AHT) and sub-
sequently applying the chain rule yields, for every ¢t > tg

3

(b(t) + (Te(z(t), A?)), (2(t), A1) — (2, 5‘)> =
In view of inequality (3.1), we obtain
O(t) +e()o(t) + Li(2(t), ) = L(#,A() < 0.

Equivalently, we have

3(t) +(00(1) + Lia(t). N) ~ L(z. A1)
(3.2) _
+ Do < Wy e
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Multiplying the above inequality by e”®) yields
d

(7o) + e (L(a(t), ) = Lz, A(1)))
ot e(t) 2 1d oM/~ T\(2
+e ()TII(I(t),A(t))II T @@, M.

Integrating over [to,t] and subsequently dividing by e?® entails

(1) + P / ™ (L(x(r), X) — L(@, (7)) dr

to

"o E(T)

(3.3)
+ e [ ™ =l (a(r), M) dr < e (o) + %H(s‘c, Y[

Noticing that (z,)\) is a saddle point of L, it holds that
¢
e=Pt®) / ) (L(z(7), N) — L@, A(r))) dr > 0.
to

Consequently, we have
_ 1. <
(t) < e "M g(to) + sl@ 1%,

implying that (z(t), A(¢)) remains bounded on [tg, +o0].
On the other hand, utilizing inequality (3.3) and taking into account that ¢(t) >
0, we obtain

e [ o) (La(r). %) - Lz, A1) dr

to

t
1 -
40 [ e S a(r) A dr < e 60) + 32 D)
to
Passing to the limit as t — 400 entails

t
lim e*p(t)/ e?(m) (L(z(7),A) = L(Z,A(1))) dT < 400, and
0

t——+o0

¢
lim e_”(t)/ () %T)H(JJ(T),)\(T))HQdT < 400,

t—+oo to
concluding the desired estimates. (|
In view of the above result, the following estimate as outlined in Cominetti et

al. [19] is verified whenever the Tikhonov regularization function ¢ : [tg, +oo[ —
10, +00[ is such that

/00 e(r)dr = +o0.

to

Corollary 3.2. Under the hypotheses of Proposition 3.1, suppose that e ¢ L' ([to, +00]).
Then, for every (Z,\) € S x M, it holds that

lim sup [|(2(£), A(£) = (@ MII* < (1@ A)]I* =l inf [|(2(2), AE))]*

t——+oo
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Proof. Recall from inequality (3.2) that for every t > to, we have
$(t) +(t)e(t) + L(x(t), \) — L(Z, A(t))
i;)(H(ﬂ_ﬁ,;\)ll2 = [l (®), A0)1?)-

Since (Z, \) is a saddle point of L, it holds that

3(0)+<ott) < 2 (1 N - ). A0 IE).

Using that (z(t), A(t)) remains bounded on [tg, +0o| together with the fact that
e ¢ LY([to, +00]), applying Lemma A.1 entails

limsup ¢(t) < limsup 5 (II(I M = 1@ (®), A1),

which is the desired estimate. O

Remark 3.3. Anchoring the above inequality to projg, ,,(0,0) suggests that the
solutions (z(t), A(t)) of (AHT) strongly converge, as t — +00, toward projg, »;(0,0)
as soon as

tim i | (2(1). A()| > [projs, s 0.0)].

Our next result provides sufficient conditions for this inequality to hold assuming
that ¢ : [to, +oo[ — ]0, 400 satisfies either one of the following estimates:

/ |é(T)|dT < 400, or

to

= e(n)?
/to E(T) dr < 4.

Theorem 3.4. Let S x M be non-empty, let (x,\) : [to,+oo] = X XY be a
solution of (AHT), and suppose that e ¢ L ([to, +oc[) with either ¢ € L' ([to, +00[)
or |€]?/e € LY([to, +a[). Then, for every (z,\) € S x M, it holds that

Jim_(L((0). %) = L@ A1) = 0
lim |(#(0). A®)] = 0.

t——+oo

Proof. Let 9 : [to, +00[ — R be defined by 9(t) = ||(&(t), A(t))||?/2. Differentiating
¥(t) and taking (AHT) into account yields, for almost every ¢ > to,

3(6) + { ST, 1), (0, A1) = 0

Equivalently, we have

9(t) + 2(1)(t) + <%T(w(t), A, (1), A®)) )

E(t) d

+ S Sl @) =0

Let us first consider the case when ¢ € L£!([to,+oo[). Multiplying the above
inequality by €2’} and using the fact that 7" is monotone entails

(0 9(0) + e 2D Lt x| < .

(3.4)
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In view of the Cauchy—Schwarz inequality, we obtain

d
3 (X0 0() <V2LOL@)lI((1), M)l e20 0 D).
Integrating over [t,,t] for some fixed t; > to and noting that (z(t), A(¢)) remains
bounded on [tg, +00[, we find that there exists K > 0 such that
¢
M Y(t) <) Yty ) + V2K [ " D|e(1)|y/e2r() 9(7) dr.

ty

Successively applying Lemma A.2 and dividing by e”®) yields

K t
I(t) < e~ (p(H)=p(t+)) I(ty) + 75 e~ P / ep(7)|a'(7')| dr

ty

K t
< e~ (P(O)=p(t1)) I(ts)+ — [ |é(r)|dr.
V2
Now, since we have both e ¢ L1([tg, +oc[) and ¢ € L([to, +00[), passing to the
upper limit as ¢t — 400 entails

K o0
lim sup v/9(t) < —/ le(T)| dr.
t— oo \/§ ty

This inequality being true for every t; > to, letting t; — +o0o ensures that ¥(t)
tends to zero as t — +o00.

Let us now consider the case when |£[>/e € L1 ([to, +oc[). Multiplying equality
(3.4) by e”(Y) and using again the fact that 7' is monotone gives

d g(t) d

3 (0 00) + eV e(t)o(t) + e == (2, AB)* < 0.

Upon applying the Cauchy—-Schwarz inequality, we infer

d £

—(e”® (1)) < er®) 1231 ADYAMIER

3 (¢ 90) <& ), A0

Integrating over [t4,t] for some fixed t; > to and using again that (x(t), A(t))
remains bounded on [tg, +0o[, we find that there exists K > 0 such that

K ' |&(r)?
9(1) < o= PO=pt0) 9(1.) + I o=r(® / o(r) EDIF 4
()—e (+)+26 t+e 5(7’) T
toa0)2
< o st) gy 4 K [ ED
N 2 Ji, e(n)
Observing now that e ¢ £1([tg, +oo]) and |£|?/e € L ([to, +o0[), we conclude that
¥(t) vanishes as t — +o0.
Finally, in view of inequality (3.1) and the regularized Lagrangian L;, for every
(Z,\) € S x M and t > to, we have

dr.

@ M1

—~
by
o)

8
—~
—

>
~—

~
~—
~—
—~

8
~—

~
~—

>
—~
~
N
=
|
roum)

K

|

m
[\) fgn

~—
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Using again that (z(t), A(t)) remains bounded on [tg, +00[, and owing to the fact
that T;(x(t), A(t)) — (0,0) strongly in X x Y as t — 400 under each of the above
conditions on (), passing to the limit entails

tETw (L(z(t), ) — L(z, A(t))) =0,
concluding the result. O

Remark 3.5. Let us compare the estimates derived in the proof of Theorem 3.4 in
the “limiting case” when ¢(t) = 1/t with to > 0. On the one hand, for every t > 4o,
we have

Consequently, ¥(¢) obeys the asymptotic estimate

I(t) = O(lng)z) as t = +o0.

On the other hand, for every ¢t > ¢y, we have

:ﬁ(to)%o T %(% - 1).

In this case, we obtain the comparable decay rate estimate
1
I(t) = (9(;) as t — +oo.

Remark 3.6. We note that the above result under the condition ¢ € £!([to, +00])
has already been established by Cominetti et al. [19, Theorem 9]) using a similar
line of arguments. In the recent work of Bot and Nguyen [14] it has been shown
that (&(t), A(t)) also tends to zero as t — 400 whenever

lim M—

t—+o0 E(t)

We are now in the position to assert the strong convergence of the solutions of
the (AHT) differential system.

Proposition 3.7. Let S x M be non-empty, let (x,\) : [to,+oo] = X xY be a
solution of (AHT), and suppose that e ¢ L' ([ty, +oo|) with either ¢ € L ([ty, +00])
or |€]? /e € L([to, +o0[). Then it holds that

im (2(0), A(1) = projg,cy; (0,0).
Proof. In view of Corollary 3.2 (see also Remark 3.3), it suffices to show that

lim inf || (z(2), A(®))[| 2 [[Projs, (0, 0)]]-
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Let (x,)) € X x Y and suppose that (z(t,), A(t,)) — (Z,)\) weakly in X x Y, as
n — +oo, for a sequence t,, - +00. By virtue of Theorem 3.4, we have

0= nggloo (L(x(tn)a A) — Lz, /\(tn)))
> liminf L(x(tn), A) + lim inf (—L(, A(tn)))
> L(J_?,)\) - L(Ia X)
thanks to the weak lower semi-continuity of L(-,\) and —L(z, -). The above

inequalities being true for every (z,\) € X x Y, we conclude that (Z,\) € S x M.
On the other hand, the weak lower semi-continuity of the norm || - || ensures
tim i | (a(t,). A1) > 12,3
This inequality being true for every (z,\) € S x M, taking the minimum over S x M
yields the desired conclusion. O

Let us next provide a strong convergence result for the solutions of (AHT) under
the assumption that €(t) is twice continuously differentiable with
tilgloo e(t) = 0.
Proposition 3.8. Let S x M be non-empty, let (x,\) : [to,+oo] = X xY be a
solution of (AHT), and let € : [to, +00[ — ]0, +o0[ be such that

2(t)+£(t) >0 v
2 (t)e(t) + &(t) < 0 b2t

for some t > tg. Then it holds that
lim (2(t), A(t)) = projsxar(0,0).

t— oo

Proof. By virtue of Cominetti et al. [19, Proposition 6|, it suffices to show that
e ¢ LY([ty,+oc]) and that all weak sequential cluster points of (x(t), A(t))i>t,
belong to the set S x M. Let t; >ty be such that 1 > —£(¢)/e?(t) for all t > ¢,.
An immediate integration over [ty ,t] yields

1 1

O]

Integrating again and passing to the limit as ¢ — 400 gives

o0 o0 1
/ E(T)dTZ/ 71d7—:+00

b e Tl Yy

so that e ¢ L1([t4, +o0).

Let (z,\) € X xY and suppose now that (z(t,), A(t,)) — (Z, \) weakly in X xY’,
as n — +oo, for a sequence t, — 4o00. Since (x(t), A(t)) is bounded on [tg, +00[
and (i(t), A(t)) — (0,0) strongly in X x Y as t — +oo (as it will be justified later
in Proposition 4.2), it follows from inequality (3.1) together with the regularized
Lagrangian L; that

0 > limsup (L(z¢,,A) — L(z, Ar,))
n—-+o0o

> liminf L(zy,,A) + iminf (—L(z, A, ))

n—-+o0o n—-+oo

> L(Z,\) — L(z, ),
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where we again utilized the weak lower semi-continuity of L(-,\) and —L(z, -).
The above derivations being true for every (z,A) € X x Y, we conclude that (z, )
is a saddle point of L, that is, (Z,\) € S x M. O

Remark 3.9. Under the hypotheses of Proposition 3.7 or Proposition 3.8, for every
(&,m) € X XY, we immediately observe that the solutions (z, ) : [tg, +oo[ = X XY
of the nonautonomous differential system

4 V@) + AN +e(t)(z—€) =0
Ab—Az+et)(A—n) =0

strongly converge toward projg, s (€,m) as t = +o0o. We leave the details to the
reader.

4. CONVERGENCE RATE ESTIMATES

In this section, we aim at deriving fast convergence rate estimates for the (AHT)
solutions. To this end, we again restrict the class of Tikhonov regularization func-
tions by replacing assumption (A4) with the condition

(A4) e : [to, +oo] = ]0,+o0] is twice continuously differentiable such that

lim &(t) =0.

t——+oo

4.1. Asymptotics relative to the set of zeros. Let us begin our discussion by
deriving fast decay rate estimates for the solutions of the (AHT) differential system
with respect to its set of zeros. The following result is based on the assumption that
the Tikhonov regularization function ¢ : [tg, +00[ — ]0,+oo[ verifies the decisive

conditions
2 o
e“(t)+€(t) >0
() "()_O} VE>t,

for some t4 > tg.

Theorem 4.1. Let Sx M be non-empty, let (x, ) : [to, +oo] = X XY be a solution
of (AHT), and let ¢ : [ty, +oo[ — ]0,+o0[ be such that

e2(t) +£(t) > 0
25(1%)5'8 + aEt; < o} izt

for some t > ty. Then, for every (Z,\) € S x M, the following assertions hold:
(&), A(£)) + (&) ((2(1), A1) — (2, V)[|> = O(e > +£2(¢
e(t) (L(z(t),N) — L(E,A(t))) = O(e2® 4 (¢

IT (@ (), () = T(@N)* = O™+t

) as t — +0o0;
) as t — +0o0;
) as t — +oo.
Proof. Let (Z,A) € S x M and define 4 : [to, +00[ — R by 4(t) = || (&:(t), \(t)) +
e(t)((z(t), At)) — (&, \))]|?/2. Moreover, let o : [tg, +0o[ — R be defined by o(t) =

e2(t)+£(t) such that ¢ (t) = 2e(t)é(t) +£&(t). Differentiating ¢ (t) and taking (AHT)
into account yields, for almost every ¢ > tg,

90+ (STl M0) +£(0)(@,X), (40, A0) + 00, A1) — (2, 2)) = 0.
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In view of an immediate expansion, we obtain

<%T<w<t>, A(t) + £, ), (@0, A®) + () ((2(t), A®)) — (2, 1))
(T (), A1) + (B)(@, V), (), MB)) + () ((2(t), A1) — (2, N))
+4(t) + 2e(t)(t) = 0.

Utilizing the basic identity
%(a(txmw ), (@(8), A1) — (2, 0))) = (T (2(t), A1), ((£), M2))
(0 ST, AD), (20, MD) — @, 2) + T, AD), (2(0),AD) ~ (@ 3)

together with the fact that

L@ (0.00) - @), (2.0)) = 2 ). (2.

the above equality reads as

< (w00) + @) A0). (0. M0) ~ @2 + 22 @ 2@ - 2@ X))

+ 2¢(t) (7/1(t) + (T (2(t), M2t)), (x(t), \(t)) — (Z,\)) + ?H(I(t), A2 - ‘ST(t)”(i7 5‘)||2)
+{ S0, M), (@0, A1) - @nwxw»n? =0

Multiplying by e2*®) and taking into account that 7" is monotone entails

(0 (0(0) + <O (), D), (1), MD) ~ (@ 3) )

+ 2 (20 (2 a0 2 - L@ 2)12))

= o0 2D 00 2o <o

Integrating over [t t] and subsequently dividing by e2P() we find that there exists
K > 0 such that

0(1) + (T (). A0). (=) A0) — @ 3) + 2 a). MO
(4.1) . i
= e [ @ Xyt 2l dr < ke 0+ =D

Noticing that we have both o(¢) > 0 and (¢) <0 for all ¢ > ¢, we deduce
»(t) + e(O(T((t), A(t)), (x(t), A)) — (T, 1)
2
< k0 Ty 3

—~

Taking into account that (z,\) is a saddle point of L and using the fact that
)

(T (x(t), A1), (x(t), A1) — (2, X)) = L((t), A) — L(Z, A(t)),
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we obtain both

o) < Koo+ Z0 ) 32, and

(LGN - LEAW) < Ke 0+ =D 5

In view of (AHT) and the fact that T'(Z,\) = (0,0), the remaining estimate now
follows at once from the basic inequality

T (), A1) = T2 N)[|* = [[(&(t), A1) + () ((2(1), A®)) = (,A)) + (), V)]|?
< (V2O + =)@ V),
concluding the result. (I

As an immediate consequence of the above result, we recover the decay rate
estimate

(@), A(®)|I> = O(e 2™ +|é(t)]) as t — 400
recently obtained by Bot and Nguyen [14] in the context of general monotone op-
erator flows with Tikhonov regularization.

Proposition 4.2. Let S x M be non-empty, let (x,\) : [tg,+oo[ = X XY be a
solution of (AHT), and let ¢ : [ty, +00o[ — ]0,+o0[ be such that

e2(t) +&(t) >0 .y
2 (t)é(t) + &(t) < 0 b2t

for some ty > ty. Then it holds that
1(@(t), A(1))]|> = O(e=27D) 4+ 2(1)) as t — +o0.

Proof. Let (z,)\) € S x M and consider again ¥ : [ty, +00[ — R defined by 9(t) =
l((¢), A(#))]|?/2. Recall from inequality (4.1) that for every t > ¢, we have

»(t) + e(O(T((t), A1), (2(t), A(t)) — (T, 1)) + ﬂH(%(t)a)\(f))ﬂz
—2p(t ! (1) 2 —2p(t) ( ) 2
=0 [0 SRl NI dr < K e+ S0 D
Utilizing the fact that ¢(t) < 0 for all ¢ > ¢, we obtain
»(t) + e(E(T((t), A1), (2(t), A(t)) — (T, 1)) + @H(ﬁ(t%)\(ﬂ)ﬂz
<o+ Z0ya 3.
Equivalently, in view of (AHT), the above mequahty reads
90+ 2@ 2012 < K o0+ ZD a1
Taking into account that o(t) > 0 for all ¢ > ¢, we have
o) < 5=+ ) A

Since (z(t), A(t)) remains bounded on [to, —|—oo[, we conclude the result. O
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The following result provides a more refined estimate for the velocity of an (AHT)
solution given the additional assumption that the Tikhonov regularization function
g : [to, +0o[ = ]0,+0o0] is decreasing.

Proposition 4.3. Let S x M be non-empty, let (x,\) : [tg,+oo[ = X XY be a
solution of (AHT), and let ¢ : [to, +00[ — ]0, +00[ be decreasing such that

2(t) +&(t) >0

. . Vi >ty
2e(t)e(t) +€(t) <0

for some ty > ty. Then the following assertion holds:

t
1 )
lim e_”(t)/ ") —|(@(7), A\(P) || dr < +o0.
[ S lE@ A

t——+oo

Proof. Let (Z,A) € S x M and consider again ¢ : [to, +0o[ — R defined by ¢(t) =
l(z(t), A(t)) — (2, \)]|?/2. Observing that we have both o(t) > 0 and &(¢) < 0 for
all t > t,, it follows from inequality (4.1) and the monotonicity of T' that

vty < Koo+ Z 0y 3.

Equivalently, we have

()

E()6(t) + 2 (DB(t) + (1) < K e 20 + 2 (7, )2

Successively dividing by () and multiplying by e?®) gives
d 1 K 1d
p(t) rt) _—_9(t) < — e P eP(t) 2
G0 00) + 0 —20(t) < e+ S L e 23|
Integrating over [t ,t] and subsequently dividing by e”() entails
¢ 1 G|
o(t) + e*p(t)/ ") —yY(r)dr < Ke*p(t)/ —— e P dr
(4.2) ty e(7) ty € 7)
1 _
+ e PO (1, ) + 5@ M
On the other hand, since d(t) < 0 for all ¢t > ¢, it follows from an immediate
integration that

—é(t)e 2p(t) > _ £(ty) e2r(ts)
Owing to the fact that (¢) is decreasing, we obtain
! —Et) o 1 o

THE) e =) © =)
Multiplying by e?® and taking into account that o(t) > 0 for all ¢ > ¢, yields

1 dews L
g(ty)e2r(t+) dt ~ e(t)
Integrating over [ty ,t] and subsequently dividing by e”(*) gives
1 b1
IS ) / 1 ey
£(ty) e2p(t4+) — ¢ . e(r) © i
implying that the integral on the right-hand side of inequality (4.2) remains bounded
on [t4,4oo]. Taking into account that ¢(t) > 0, passing to the limit in inequality
(4.2) as t — +oo then gives the desired result. O
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Let us now investigate the rate of strong convergence of the (AHT) solutions
under the assumption that there exists a > 0 such that for every (z, ), (§,n) €
X x Y, it holds that

(L) 1T (2, A) = T n)l* = all(z, ) — ()l

Recall that condition (L) clearly implies that the set S x M is a singleton. The
following result is an immediate consequence of Theorem 4.1.

Corollary 4.4. Under the hypotheses of Theorem 4.1, suppose that T : X XY —
X XY satisfies condition (L). Then, for (Z,\) € S x M, it holds that

[(z(t), A1) — (7, A2 = O(e 2 +2(t)) as t — +oo.

Proof. Let (Z,A) € S x M and consider again ¢ : [to, +oo[ — R defined by ¢(t) =
l(z(), A(#)) — (&, \)]|?/2. Since T satisfies condition (L), there exists a > 0 such
that for every t > t,, it holds that

1T ((t), A(t)) = T(Z, M| > 2a¢(t).
The desired estimate now follows at once from Theorem 4.1. O

4.2. Asymptotics relative to the viscosity curve. Let us now adapt the previ-
ous results to obtain fast decay rate estimates for the (AHT) solutions with respect
to the viscosity curve (¢, A¢) as t — +oo. Recall that the viscosity curve (x4, At)
is characterized, for each ¢ > tp, as the unique zero of the (t)-strongly monotone
operator

T.=T+e¢e(t)1d.
The following result is analogous to Theorem 4.1.
Theorem 4.5. Let S x M be non-empty and let (z,A) : [to,+oo] =& X XY be
a solution of (AHT). Let (z,A\t) = zer Ty for each t > to and suppose that € :
[to, +00[ — ]0, +00[ verifies
2 .
e”(t)+£(t) >0
() ()_ Vit >ty
2e(t)e(t) +€(t) <0

for some t > tg. Then the following assertions hold:
1), AE) + () ((2(1), A1) = (@0, W))II* = O™ 4 2(1)) as t — +oc;
1T (2(t), A(t)) — T (s, o) 1> = (’)(e_2p(t) +%(t)) ast — +oo.

Proof. Let S x M be non-empty, let (z;, \;) = zer Ty, and let 6 : [to, +oo[ = R
be defined by 0(t) = ||(E(t), A(t) + £(8)((2(t), A(1)) — (21, A))[[*/2. Consider again
o : [to, +oo[ = R defined by o(t) = 2(t) + £(t) such that &(t) = 2e(t)é(t) + £(t).
Using similar derivations as in the proof of Theorem 4.1, there exists K > 0 such
that for every ¢t > ¢, it holds that

0(t) + ()T (x(t), A1), (x(), M) — (1, M) + ?II(I@), )P

t . 2 t
=20 [ D jatry AP ar < e+ S o n
+
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Observing that we have both o(t) > 0 and () < 0 for all ¢ > ¢, we infer
0(t) + e ()(T (x(t), A(X)), (x(), A(t)) = (1, Ar))
2
< ke + D, )2

In view of the system of primal-dual optimality conditions, we readily deduce
e(t) + E(t) <T(‘T(t)7 )‘(t)) - T(xtv )‘t)v (.’L‘(t), )‘(t)) - (xtv )‘t)>
_ e2(t
rmcn) < K0+ D, a0
with ¢ : [tg, +0o[ — R being defined as ((t) = ||(z(t), A(t)) — (z¢, \)||?/2. Using the
fact that T is monotone and taking into account that (z(¢), A(t)) remains bounded
on [tg, +00[, we arrive at the desired conclusion. O

Similarly to Proposition 4.3, some more refined estimates can be derived under
the additional assumption that the Tikhonov regularization function € : [tg, +o00[ —
10, +00[ is decreasing.

Proposition 4.6. Let S x M be non-empty and let (x,\) : [to,+oo] = X X Y
be a solution of (AHT). Let (x¢, M) = zerT; for each t > to and suppose that
e [to, +o0[ = ]0,4+00[ is decreasing such that
2 .
e“(t) +e(t) >0
( : ( ) Vt >ty
2e(t)e(t) +€() <0

for some ty > ty. Then the following estimates are verified:

im e—P® tep(r)i (7). M (T ) — (z 2 qr o
,m /t+ E(T)H( (1), A7) + () (2(7), A7) — (27, Ar)) |7 dT < +00;
im e tep(T)L z(T 7)) =T (x 24r 0.

Jm /t 2 1T@D M) = Ter M) [*dr <+

Proof. Let S x M be non-empty, let (x4, A\¢t) = zer T3, and let 0 : [to, +oo[ — R be
defined by 0(t) = ||(&(), A(t) + e(t)((x(t), A(#)) — (21, \¢))[|?/2. In view of (AHT)
and the system of primal-dual optimality conditions, for every ¢ > tg, we have
@), A = [T (@), A1) = T(we, M) + () ((2(E), A1) = (w2, M) |®
> [T (x(t), A1) = T(xe, M) + 2O (2(2), AE)) — (e, M)
> || T(x(t), A1) — T (e, )%,
where the first inequality follows from the monotonicity of 7. Upon using (AHT)

again, we infer .
1@ (2), A())]* = 26(t).
The assertions are now readily deduced as in Proposition 4.3. O

Finally, let us provide an estimate on the (AHT) solutions relative to the viscosity
curve (¢, \¢) assuming again that T: X x Y — X x Y verifies condition (L).

Corollary 4.7. Under the hypotheses of Theorem 4.5, suppose that T : X XY —
X XY satisfies condition (L). Then the following assertion holds:

1(@(t), A1) = (2, A = O(e_Q”(t) +<€2(t)) as t — +o0.

Proof. In view of condition (L), the assertion follows at once from Theorem 4.5. [
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4.3. The particular case £(t) = 1/t?. Let us now particularize the previous
results to the case when the Tikhonov regularization function ¢ : [to, +00[ — ]0, +00]
takes the form

1
e(t) = m with p € ]0,1] and ¢y > 0.

Since £(t) vanishes as t — +oo with e & L!([tg, +oc[) and & € L1 ([to, +o0]) for every
p €0, 1], we immediately deduce from Proposition 3.7 that the solutions (z(t), A(t))
of (AHT) strongly converge toward projg, ,(0,0) as t — +o00. Moreover, for every
t > to, we have &(t) = —p/tP*! and &(t) = p(p + 1)/t?*2 so that

- __p .
t2p tp+1’
2p  plp+1)

T2t 1p+2

2(t) +&(t) =

2e(t)E(t) + &(t) =

In the case p = 1, we have both €2(t) + £(t) = 0 and 2e(¢)e(t) + £(¢t) = 0 for every
t > tg. On the other hand, whenever p € ]0, 1], we readily obtain

1 p -
tQ_P_tP?EO — v < t;

2p p(p+1) 1-pp+1
_t2p+1+ oY) <0 <= Tgt.

Consequently, for every p € 0, 1], there exists t, = max {to, \/(p + 1)/2} such that

2(t)+£(t) >0
2e(t)é(t) + &(t) < o} 2 by

implying that the hypotheses of Theorem 4.1 are verified. This immediately leads
to the following assertion.

Proposition 4.8. Let S x M be non-empty, let (x,\) : [tg,+oo[ = X XY be a
solution of (AHT), and let € : [to, +00[ — ]0,+00[ be defined by e(t) = 1/t7 with
p € 10,1] and tg > 0. Then, for every (T,\) € S x M, it holds that

G, AW) + 2 (), AD) — @ P = O 4 -2) as 1 - oo
tlp(L(:c(t), A) = L(z, A1) = O(e*z’f)(t) + tép) as t — 400;

1T (x(t), A1) — T(z, N)||? = o(e*%(” + ﬁip) as t — +00;

(&), A(®)|12 = o(e*‘é’ﬂ(” + tgip) as t — +oo.

Moreover, (xz(t), A(t)) converges strongly to projgy s(0,0) as t — +oo.

Remark 4.9. In view of the above result, we observe that the fastest rate of conver-
gence is achieved for the value p = 1. In this case, the above asymptotic estimates
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reduce to
G0 AW) + (@O.N0) = @I = 0(57) as t = +o0
%(Lcr(tm — L(@A10) = O() s = +ou:
@) M0) = T@ NP = O(35) as t = +oo;
G0 AW = 0(5) ast = +oc.

Moreover, if T satisfies condition (L), it further holds that
< 1
|@(®),A0) = @ N)? = O as t = +oo.
With respect to the viscosity curve (z¢, A;), we have the following decay rate
estimates as t — +4o00:

Proposition 4.10. Let S x M be non-empty and let (x, \) : [to, +oo[ = X XY be
a solution of (AHT). Let (z, A\t) = zer Ty for each t > to and let € : [to, +oo] —
10, +o0] be defined by e(t) = 1/tP with p € |0,1] and to > 0. Then the following
assertions hold:

G, AW) + 5 (), AD) — (e AP = OO 4 ) as 1 oo

1
IT @) A®) = T, 2) 2 = O 20 4+ ) as t = +o0.

Remark 4.11. In the particular case €(¢) = 1/t, and under the assumption that T
satisfies condition (L), we further have

1(2(8), A(E) — (e, A2 = o(tlz) as £ — +oc.

5. NUMERICAL EXPERIMENTS

In this section, we provide a simple yet representative example that allows for a
direct exposition of our main results.

Example. Let X, Y = R and consider the saddle-value problem

min max L(x, A),
zER AR

where L : R x R — R is defined in terms of the convex-concave and continuously
differentiable bifunction L(z,A) = A(z — 1). Let us choose the Tikhonov regular-
ization function ¢ : [tg, +0o[ — ]0,4+o00[ as () = 1/tP with p € ]0,1] and 5 > 0. In
this case, the (AHT) differential system reduces to
A+ = =0
tp
: A
A+l—z+—=0.
tp
The evolution of the solutions (x(t), A(t)) of the (AHT) differential system together
with the viscosity curve (z¢, \:) as t — 4oo for different values of the Tikhonov
regularization parameter p € ]0,1] is depicted in Figures 1 and 2. We thereby

distinguish the cases p = 1 (see Figure 1) and p € ]0, 1] (see Figure 2). In any case,
the initial data is set to (g, Ao) = (0,0) with to = 1/100.
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The particular case p = 1. Since £(t) tends to zero as t — +oo with ¢ ¢
LY([to, +o0o]) and & € L([tg, +oo), we readily observe from Figure 1 that the
solution (x(t), A(t)) of (AHT) converges, as t — +00, to the unique saddle point
(Z,\) = (1,0) of the bifunction L; cf. Proposition 3.7. Moreover, since (t) verifies,
for every t > tg, the decisive conditions

e2(t) +&(t) =0
{25(15)5'(15) +E(t) =0,

we obtain, in accordance with Theorem 4.1 and Proposition 4.2, that ||(i:(t), A(t)) +
e(®)((z(t), \#))—(Z,\)||? and ||(&(t), A(t))||* obey the asymptotic estimate O(1/t?)
as t — +o0. In particular, as £(t) is decreasing, we have the refined estimate

1 [ .
Jdm 7 [ 7l A 1ar < oo
which suggests that t[|(z(t), A(t))||* vanishes fast as ¢ — +oo in the sense of an
“exponentially weighted moving average”; cf. Proposition 4.3. A similar behavior
can be observed for |(z(¢), A(t)) — (z¢, A¢)||?. Finally, since the operator

T:-RxR—RxR
(,\) — (N, 1—x)

associated with the saddle function L verifies condition (L) with o = 1, we readily
observe that ||(x(t), A(t)) — (%, \)||? obeys the asymptotic estimate O(1/t2) as t —
+00; see Corollary 4.4. In this scenario, we also find that ||(&, A;)||? vanishes, as
predicted by Lemma 2.7, according to the fast asymptotic estimate O(1/(t* + 1)?)
as t — +00.

The particular case p € ]0,1[. Analyzing Figure 2, we observe that the solu-
tions (x(t), A(t)) of the (AHT) differential system still admit favorable convergence
properties, but their decay rate is considerably degraded as the value of the Tikho-
nov regularization parameter p decreases. As predicted by Theorem 4.1 and Propo-
sition 4.2, we find that ||(&(t), A(t)) 4+ e(t) ((x(t), A(t)) — (T, A)||? and ||(&(t), A(t))]]?
obey the asymptotic estimate O(e_Q”(t) + 1/t2p) as t — 4o00. However, this esti-
mate is no longer sharp for p € ]0,1[ due to the conservatism introduced by the

inequalities
2(t) +E(t) >0
E.() %.()_ Vi >ty
2e(t)e(t) +&(t) <0

for some t; > ty. Given this observation, we recover the fact that the fastest con-
vergence rate estimates are obtained whenever the Tikhonov regularization function
e [to, +00[ = ]0,+0o0] is chosen according to the differential equation

E(t) +%(t) =0,

whose solutions take the form
e(t) =
®) t+c’

We leave the discussion on sharp asymptotic decay rate estimates for the solutions
(z(t), A(t)) of (AHT) in the case when the Tikhonov regularization parameter p is
chosen in ]0, 1] open for future investigations.

c > —tp.
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(z(to), A(to))

(c) Evolution of ||(&(¢t), A(t))||2 (p) Evolution of ||(z(t), A(t)) — (Z, \)||?

(i 17)

(E) Evolution of ||(x(t), A\(t)) — (zt, Ae)||? (r) Evolution of ||(d¢, A¢)||?

FiGUurRE 1. Graphical view on the evolution of a solution
(x(t), A(t)) of the (AHT) differential system together with the vis-
cosity curve (¢, A¢) as t — +oo for the Tikhonov regularization
parameter p = 1.

APPENDIX

We collect here some auxiliary results which are used in the asymptotic analysis
of the solutions of the (AHT) differential system.

Let us first recall the following classical result as outlined in Cominetti et al. [19,
Lemma 1].



ASYMPTOTIC BEHAVIOR OF THE (AHT) DIFFERENTIAL SYSTEM 27

(z(to), Al(to))

(a) Trajectories of (z(t), A(t)) and (z¢, \¢) (8) Evolution of ||(2(t), A(t))+e(t) ((z(t), A(t))—(Z, N))||2

ﬁ?

(c) Evolution of ||(&(t), A(t))||2 (p) Evolution of ||(z(t), A(t)) — (%, V)]

f

) Evolution of ||(z(t), A(t)) — (z¢, M\t)]|? (r) Evolution of ||(&¢, A¢)||2

FIGURE 2. Graphical view on the evolution of the (AHT) solu-
tions (z(t), A(t)) and the viscosity curve (z¢, \:) for the Tikhonov
regularization parameters p = 1/4, p=1/2, and p = 3/4.

Lemma A.1. Let ¢ : [to, +oo[ = R be continuously differentiable, let ¥ : [to, +oo[ —
R be bounded, and let € : [to, +0o] — [0, +00[ be locally integrable such that

(1) +e()o(t) < e()d(t) Vit > to.
Then ¢(t) remains bounded on [to, +oc[. Moreover, if € ¢ L ([to, +00[), then
limsup ¢(t) < limsup 9(¢).
t——+o0

t——+oo
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For the following basic inequality of Gronwall-type, the reader is referred to

Brézis [16, Lemma A.5].

Lemma A.2. Let ¢ : [tg, +0oo[ = R be continuous and non-negative, and let 9 :
[to, +00[ = [0, 4+00[ be locally integrable such that

%(f(t) < %¢2(f0) + t19(7)¢(7) dr Yt > t.

to

Then it holds that

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

t

¢(t)§¢(t0)+/ I(r)dr Yt > to.

to
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