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Abstract: In a real Hilbert space setting, we investigate the asymptotic properties of the so-
lutions of the classical continuous steepest descent method with convex-like potential. Despite
the absence of convexity, we show that the solutions preserve the remarkable minimizing prop-
erties typically associated with convex functions. In particular, we find that the values of the
convex-like potential decay asymptotically at a sublinear rate. If, moreover, the potential func-
tion is weakly lower semi-continuous, we prove that the solutions weakly converge toward a min-
imizer. Under a quadratic growth condition on the convex-like potential, we further provide a
strong convergence result on the solutions along with a linear decay rate of the function values.
Numerical experiments illustrate our theoretical findings.
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1. INTRODUCTION

Let H be a real Hilbert space endowed with inner prod-
uct 〈 · , · 〉 and associated norm ‖ · ‖. Consider the mini-
mization problem

inf {f(x) : x ∈ H}, (P)

where f : H → R is a continuously differentiable real-
valued function. The classical continuous steepest descent
method associated with (P) consists of the first-order evo-
lution equation

ẋ+∇f(x) = 0 (SD)
with ∇f : H → H denoting the (Fréchet) gradient of f .
We say that x : [0,+∞[ → H is a (classical) solution of
(SD) if x ∈ C1([0,+∞[;H) such that it verifies (SD) on
[0,+∞[.

The minimizing properties of (SD) relative to f are un-
derlined by the fact that the solutions x(t) of (SD) satisfy,
for every t ≥ 0, the “descent property”

d

dt
f(x(t)) + ‖ẋ(t)‖2 = 0.

Hence, as long as the solutions of (SD) do not reach the
critical points of f , that is, crit f := {x ∈ H : ∇f(x) = 0},
the mapping

t 7−→ f(x(t))
is decreasing. Assuming now that the function f is mi-
norized, that is, infH f > −∞, and that ∇f is Lipschitz
continuous on the bounded subsets ofH, the Cauchy prob-
lem associated with (SD) is well posed and the solutions
x : [0,+∞[ → H of (SD) satisfy the “finite-energy prop-
erty”

∫ ∞

0

‖ẋ(τ)‖2 dτ < +∞.

Moreover, the bounded solutions of (SD) are such that

lim
t→+∞

∇f(x(t)) = 0.

Consequently, if there exists x̄ ∈ H such that x(tn) → x̄
strongly in H as n → +∞ for some sequence tn → +∞,

then x̄ ∈ crit f . However, without any additional assump-
tions on f , the bounded solutions x(t) of (SD) may fail to
converge as t → +∞; see Palis and de Melo (1982) for a
counterexample.

In contrast, the solutions of (SD) are known to inherit
remarkable minimizing properties whenever the function f
is convex. Indeed, assuming that f is convex, the solutions
of (SD) are minimizing in the sense that (see Brézis (1971,
1973))

lim
t→+∞

f(x(t)) = infH f.

If, in addition, the set argminH f is nonempty, then the
solutions of (SD) obey the asymptotic estimate (see, again,
Brézis (1971, 1973))

f(x(t)) −minH f = O
(1

t

)

as t → +∞.

In this case, the solutions x(t) of (SD) are weakly con-
vergent, as t → +∞, toward an element of argminH f ; cf.
Bruck (1975). On the other hand, if the solutions of (SD)
are known to be strongly convergent, then the above esti-
mate improves to (see Güler (2005))

f(x(t)) −minH f = O

(1

t

)

as t → +∞.

Note, however, that the weakly convergent solutions of
(SD) need not be strongly convergent; see Baillon (1978)
for a counterexample.

The above estimates have further been developed in the
recent work of Attouch et al. (2024). Assuming again that
f is convex such that argminH f is nonempty, the solutions
x : [0,+∞[→ H of (SD) satisfy, in fact, the refined integral
estimate

∫ ∞

0

τ‖ẋ(τ)‖2 dτ < +∞.

Moreover, the asymptotic estimate

f(x(t))−minH f = O

(1

t

)

as t → +∞



holds independent of the strong convergence assumption.
In addition, the following estimate on the velocity ẋ(t) of
a (SD) solution is verified:

‖ẋ(t)‖ = O

(1

t

)

as t → +∞;

we refer the reader to Niederländer (2021, 2023) (see also
Battahi et al. (2024)) for the respective results on the “gen-
eralized steepest descent method” in the context of linearly
constrained convex minimization.

In this work, we aim at deriving asymptotic estimates on
the (SD) solutions based on a convexity-like assumption on
the potential function f . In particular, we assume that f :
H → R is continuously differentiable with argminH f 6= ∅
and that there exists θ > 0 such that, for every x ∈ H and
x̄ ∈ argminH f , it holds that

〈∇f(x), x− x̄〉 ≥ θ
(

f(x)−minH f
)

. (C)

Condition (C) can be viewed as a generalization of the no-
tion of convexity. Indeed, if f is continuously differentiable
and convex, then the above condition is satisfied with θ =
1. On the other hand, condition (C) also generalizes Euler’s
identity for homogeneous functions. The above inequality
has already been investigated by Cabot et al. (2009) (see
also Su et al. (2016), Aujol et al. (2019), Sebbouh et al.
(2020)) in the context of second-order evolution equations
solving the minimization problem (P). In particular, it has
been shown by Su et al. (2016) that every continuously
differentiable function f : H → R with the property that

x 7−→ θ

√

f(x)−minH f

is convex for some θ > 0 satisfies condition (C). More re-
cently, Aujol et al. (2019) (see also Sebbouh et al. (2020))
provided a geometric interpretation of (a local version of)
condition (C) in terms of a “flatness property” of the func-
tion f in the neighborhood of its minimizers; we also refer
the reader to Cabot et al. (2009) for particular examples
of functions f which satisfy condition (C).

The main contribution of this work is to extend the min-
imizing properties of the classical continuous steepest de-
scent method (SD), established in the convex case, to con-
vex-like functions f satisfying condition (C). In particular,
we show that the solutions x(t) of (SD) with convex-like
potential f evolve according to the estimate

lim sup
t→+∞

t
(

f(x(t)) −minH f
)

< +∞,

suggesting that f(x(t))−minH f behaves as O(1/t) as t →
+∞. More precisely, we show that the solutions x(t) of
(SD) obey, as in the convex case, the estimate

f(x(t))−minH f = O

(1

t

)

as t → +∞.

Moreover, the refined integral estimate
∫ ∞

0

τ‖∇f(x(τ))‖2 dτ < +∞

remains valid. If, in addition, the convex-like function f is
weakly lower semi-continuous, we show that there exists
x̄ ∈ argminH f such that

w− lim
t→+∞

x(t) = x̄.

Finally, under the additional assumption that f satisfies a
“quadratic growth condition”, that is, there exists α > 0
such that, for every x ∈ H and x̄ ∈ argminH f ,

f(x)−minH f ≥ α‖x− x̄‖2, (QG)

we show that the solutions x(t) of (SD) strongly converge,
as t → +∞, toward the unique element of argminH f . In
this case, we further derive the estimates

f(x(t)) −minH f = O
(

e−2αθt
)

as t → +∞;

‖x(t)− x̄‖2 = O
(

e−2αθt
)

as t → +∞;

‖ẋ(t)‖2 = O
(

e−2αθt
)

as t → +∞.

A simple yet representative numerical example illustrates
our findings.

2. PRELIMINARY FACTS

In the following, we presuppose that

(A1) f : H → R is continuously differentiable and mi-
norized, i.e., infH f > −∞;

(A2) ∇f : H → H is Lipschitz continuous on bounded
sets.

Consider again the first-order evolution equation

ẋ+∇f(x) = 0 (SD)

with initial data x0 ∈ H. Following Haraux (1991), we say
that x : [0,+∞[ → H is a (classical) solution of the above
Cauchy problem if x ∈ C1([0,+∞[;H) such that it ver-
ifies (SD) on [0,+∞[ with x(0) = x0. Equivalently, the
mapping x : [0,+∞[ → H is a solution of (SD) if it is con-
tinuous such that

x(t) +

∫ t

0

∇f(x(τ)) dτ = x0, t ≥ 0.

Let us begin our discussion by recalling some preliminary
facts on the (SD) differential system. The following results
are outlined, for instance, in Chill and Fašangová (2010).

Theorem 2.1. For every x0 ∈ H there exists a unique so-
lution x : [0,+∞[ → H of (SD). Moreover,

(i) t 7→ f(x(t)) is non-increasing and

d

dt
f(x(t)) + ‖ẋ(t)‖2 = 0, t ≥ 0;

(ii) it holds that
∫ ∞

0

‖ẋ(τ)‖2 dτ < +∞.

The above result identifies the correspondence

x 7−→ f(x)

as a Lyapunov function for the continuous steepest descent
(SD) whose decay property will be essential for the anal-
ysis of the asymptotic behavior of its solutions. Indeed,
assuming the boundedness of the (SD) solutions, we have
the following asymptotic properties.

Proposition 2.2. Let x : [0,+∞[ → H be a bounded solu-
tion of (SD). Then it holds that

lim
t→+∞

ẋ(t) = lim
t→+∞

∇f(x(t)) = 0.

Moreover, if there exists x̄ ∈ H such that x(tn) → x̄
strongly in H as n → +∞ for some sequence tn → +∞,
then x̄ ∈ crit f .

Remark 2.3. We note that the solutions of (SD) remain
bounded, for instance, whenever f is coercive, that is,

lim
‖x‖→+∞

f(x) = +∞.



Indeed, it suffices to observe from Theorem 2.1(i) that for
every t ≥ 0, it holds that

f(x(t)) ≤ f(x(0)).

This majorization together with the fact that f is coercive
clearly implies that x(t) remains bounded on [0,+∞[.

3. THE (SD) EVOLUTION EQUATION

Let us now investigate the (SD) evolution equation under
the assumption that f : H → R is continuously differen-
tiable with argminH f 6= ∅ such that condition (C) holds,
i.e., there exists θ > 0 such that for every x ∈ H and
x̄ ∈ argminH f , it holds that

〈∇f(x), x− x̄〉 ≥ θ
(

f(x)−minH f
)

.

Condition (C) clearly implies that every critical point of f
is a minimizer. Indeed, assuming that x ∈ crit f , we readily
obtain

0 ≥ f(x)−minH f,

implying that x ∈ argminH f . Note, however, that f may
admit multiple (non-isolated) minimizers. Yet another con-
sequence of condition (C) is that, for every x ∈ H and λ ∈
[0, 1], it holds that

f(x̄+ λ(x − x̄))−minH f ≤ λθ
(

f(x)−minH f
)

,

suggesting that the function value contracts by at most λθ

when contracting the line segment from x to x̄ by a factor
λ. To see this, let x ∈ H and take λ ∈ [0, 1]. Upon defining
the auxiliary function φ : [0,+∞[ → [0,+∞[ by

φ(λ) = f(x̄+ λ(x − x̄))−minH f,

in view of condition (C), we obtain

λφ′(λ) ≥ θφ(λ), λ ∈ ]0, 1].

An immediate integration then gives

λθφ(1) ≥ φ(λ).

Let us start our discussion by deriving some basic prop-
erties of the (SD) solutions under condition (C).

Theorem 3.1. Let f : H → R satisfy condition (C) with
θ > 0 and let x : [0,+∞[→ H be a solution of (SD). Then,
for every x̄ ∈ argminH f , the following assertions hold:

(i) t 7→ ‖x(t)− x̄‖2 is non-increasing and

1

2

d

dt
‖x(t)− x̄‖2 + θ

(

f(x(t)) −minH f
)

≤ 0, t ≥ 0;

(ii) limt→+∞‖x(t)− x̄‖ exists;
(iii) x ∈ L∞([0,+∞[;H);
(iv) it holds that

∫ ∞

0

f(x(τ)) −minH f dτ < +∞.

Proof. Let x̄ ∈ argminH f . Taking the inner product with
x(t)− x̄ in (SD) and subsequently applying the chain rule,
for every t ≥ 0, we have

1

2

d

dt
‖x(t)− x̄‖2 + 〈∇f(x(t)), x(t) − x̄〉 = 0.

In view of condition (C), we obtain

1

2

d

dt
‖x(t)− x̄‖2 + θ

(

f(x(t)) −minH f
)

≤ 0.

Owing to the fact that f(x(t))−minH f ≥ 0, it readily fol-
lows that

t 7−→ ‖x(t)− x̄‖2

is non-increasing. This quantity being bounded from be-
low, we infer that

lim
t→+∞

‖x(t)− x̄‖2 exists,

implying that x(t) remains bounded on [0,+∞[. On the
other hand, integrating the above inequality over [0, t] en-
tails

1

2
‖x(t)− x̄‖2 + θ

∫ t

0

f(x(τ)) −minH f dτ

≤
1

2
‖x(0)− x̄‖2.

Taking into account that ‖x(t)− x̄‖2 ≥ 0 and subsequently
dividing by θ > 0 gives

∫ t

0

f(x(τ)) −minH f dτ ≤
1

2θ
‖x(0)− x̄‖2.

This majorization being valid for every t ≥ 0, passing to
the limit as t → +∞ yields the desired conclusion.

As an immediate consequence of the above result to-
gether with the decay property of the mapping

t 7−→ f(x(t)),

we have the following asymptotic estimate.

Corollary 3.2. Under the hypotheses of Theorem 3.1, the
following assertion holds:

f(x(t))−minH f = O

(1

t

)

as t → +∞

Proof. In view of Theorem 2.1(i), we readily observe that
the mapping

t 7−→ f(x(t))−minH f

is non-increasing. Hence, for every t ≥ 0, it holds that
∫ t

t/2

f(x(τ)) −minH f dτ ≥
t

2

(

f(x(t)) −minH f
)

.

Owing to the fact that f(x) − minH f ∈ L1([0,+∞[;R),
we classically deduce that the above integral vanishes as
t → +∞ and thus,

lim
t→+∞

t
(

f(x(t)) −minH f
)

= 0,

concluding the desired estimate.

Remark 3.3. We emphasize that the above asymptotic es-
timate clearly implies that

lim
t→+∞

f(x(t)) = minH f.

We leave the details to the reader.

Let us now investigate the convergence properties of the
solutions of (SD). To this end, we assume, in addition to
condition (C), that the function f is weakly (sequentially)
lower semi-continuous, that is, for every sequence (xn)n∈N

and x ∈ H such that xn ⇀ x weakly in H as n → +∞, it
holds that

lim inf
n→+∞

f(xn) ≥ f(x).

Given this additional assumption, we have the following
weak convergence result.

Proposition 3.4. Let f : H → R be weakly lower semi-con-
tinuous such that condition (C) holds. Let x : [0,+∞[→ H
be a solution of (SD). Then there exists x̄ ∈ argminH f
such that

w− lim
t→+∞

x(t) = x̄.



Proof. Let x̄ ∈ argminH f and recall from Theorem 3.1
(ii) that

lim
t→+∞

‖x(t)− x̄‖ exists.

In view of Lemma A.1, it suffices to show that every weak
sequential cluster point of (x(t))t≥0 belongs to argminH f .
Let x ∈ H and suppose that x(tn) ⇀ x weakly in H, as
n → +∞, for a sequence tn → +∞. By virtue of Corollary
3.2 and the weak lower semi-continuity of f , we have

minH f = lim
n→+∞

f(x(tn))

= lim inf
n→+∞

f(x(tn))

≥ f(x),

implying that x ∈ argminH f . We conclude by applying
Lemma A.1 to the set argminH f .

Remark 3.5. We note that every convex function f : H →
R is weakly lower semi-continuous; see, e.g., Ekeland and
Témam (1999), Bauschke and Combettes (2017). On the
other hand, when H is finite-dimensional, the notions of
weak and (strong) lower semi-continuity coincide.

Let us conclude this section with a result on the strong
convergence of the solutions of (SD) under the additional
assumption that f satisfies condition (QG), i.e., there ex-
ists α > 0 such that, for every x ∈ H and x̄ ∈ argminH f ,

f(x)−minH f ≥ α‖x− x̄‖2.

Condition (QG) may be interpreted as a “quadratic growth
condition” which implies that argminH f is a singleton.

Proposition 3.6.Under the hypotheses of Theorem 3.1, sup-
pose that f : H → R satisfies condition (QG). Then, for
x̄ ∈ argminH f , it holds that

lim
t→+∞

x(t) = x̄.

Proof. Let x̄ ∈ argminH f and recall from Corollary 3.2
that

lim
t→+∞

f(x(t)) = minH f.

In view of condition (QG), we readily obtain

lim
t→+∞

‖x(t)− x̄‖2 = 0,

concluding the result.

4. ASYMPTOTIC ESTIMATES

In this section, we aim at deriving explicit decay rate es-
timates for the (SD) evolution equation. In particular, we
show that the solutions x(t) of (SD) obey, under condition
(C), the refined integral estimate

∫ ∞

0

τ‖ẋ(τ)‖2 dτ < +∞.

The technique we use to prove this fact essentially relies on
a combination of the previous arguments.

Theorem 4.1. Let f : H → R satisfy condition (C) with
θ > 0 and let x : [0,+∞[→ H be a solution of (SD). Then,
for every x̄ ∈ argminH f , the following assertions hold:

(i) t 7→ ‖x(t)− x̄‖2/2θ + t
(

f(x(t)) −minH f
)

is non-in-
creasing and

1

2θ
‖x(t)− x̄‖2 + t

(

f(x(t)) −minH f
)

+

∫ t

0

τ‖ẋ(τ)‖2 dτ ≤
1

2θ
‖x(0)− x̄‖2, t ≥ 0;

(ii) it holds that

lim sup
t→+∞

t
(

f(x(t)) −minH f
)

< +∞;

(iii) it holds that
∫ ∞

0

τ‖ẋ(τ)‖2 dτ < +∞.

Proof. Let x̄ ∈ argminH f and let ρ : [0,+∞[ → ]0,+∞[
be some continuously differentiable function to be chosen.
Taking the inner product with ẋ(t)+ρ(t)(x(t)−x̄) in (SD),
for every t ≥ 0, we have

ρ(t)

2

d

dt
‖x(t)− x̄‖2 + 〈∇f(x(t)), ẋ(t)〉

+ ρ(t)〈∇f(x(t)), x(t) − x̄〉+ ‖ẋ(t)‖2 = 0.

Dividing by ρ(t) and using the chain rule yields

1

2

d

dt
‖x(t)− x̄‖2 +

1

ρ(t)

d

dt

(

f(x(t))−minH f
)

+ 〈∇f(x(t)), x(t) − x̄〉+
1

ρ(t)
‖ẋ(t)‖2 = 0.

In view of the basic identity

1

ρ(t)

d

dt

(

f(x(t)) −minH f
)

=
d

dt

( 1

ρ(t)

(

f(x(t))−minH f
)

)

−
d

dt

( 1

ρ(t)

)

(

f(x(t))−minH f
)

,

the above equality reads as

1

2

d

dt
‖x(t)− x̄‖2 +

d

dt

( 1

ρ(t)

(

f(x(t))−minH f
)

)

−
d

dt

( 1

ρ(t)

)

(

f(x(t))−minH f
)

+
1

ρ(t)
‖ẋ(t)‖2

+ 〈∇f(x(t)), x(t) − x̄〉 = 0.

Upon applying condition (C), we obtain

1

2

d

dt
‖x(t)− x̄‖2 +

d

dt

( 1

ρ(t)

(

f(x(t))−minH f
)

)

+
(

θ −
d

dt

( 1

ρ(t)

))

(

f(x(t)) −minH f
)

+
1

ρ(t)
‖ẋ(t)‖2 ≤ 0.

Fix ε > 0 and set ρ(t) = 1/
(

θ(t+ε)
)

such that, for every
t ≥ 0, it holds that

d

dt

( 1

ρ(t)

)

= θ.

Consequently, we have

1

2θ

d

dt
‖x(t)− x̄‖2 +

d

dt

(

(t+ ε)
(

f(x(t)) −minH f
)

)

+(t+ ε)‖ẋ(t)‖2 ≤ 0.

Integrating the above inequality over [0, t] and passing to
the limit as ε ց 0 entails

1

2θ
‖x(t)− x̄‖2 + t

(

f(x(t))−minH f
)

+

∫ t

0

τ‖ẋ(τ)‖2 dτ ≤
1

2θ
‖x(0)− x̄‖2.

Taking into account that t‖ẋ(t)‖2 ≥ 0, we immediately ob-
serve that

t 7−→
1

2θ
‖x(t)− x̄‖2 + t

(

f(x(t)) −minH f
)



is non-increasing. Moreover, as we have both ‖x(t)− x̄‖2 ≥
0 and t‖ẋ(t)‖2 ≥ 0, we further deduce that

t
(

f(x(t))−minH f
)

≤
1

2θ
‖x(0)− x̄‖2.

Passing to the upper limit as t → +∞ ensures

lim sup
t→+∞

t
(

f(x(t)) −minH f
)

< +∞.

On the other hand, using that ‖x(t)− x̄‖2/2θ+t
(

f(x(t))−

minH f
)

≥ 0, we obtain
∫ t

0

τ‖ẋ(τ)‖2 dτ ≤
1

2θ
‖x(0)− x̄‖2.

This majorization being valid for every t ≥ 0, taking the
supremum yields

∫ ∞

0

τ‖ẋ(τ)‖2 dτ < +∞,

concluding the result.

Remark 4.2. Theorem 4.1(ii) asserts that the solutions x(t)
of (SD) obey the asymptotic estimate

f(x(t))−minH f = O
(1

t

)

as t → +∞.

In fact, as previously shown in Corollary 3.2, the above es-
timate improves to O(1/t) as t → +∞.

We conclude this section by deriving fast asymptotic es-
timates for the (SD) solutions under the assumption that
the convex-like potential f : H → R satisfies again condi-
tion (QG).

Proposition 4.3.Under the hypotheses of Theorem 4.1, sup-
pose that f : H → R satisfies condition (QG) with α > 0.
Then, for x̄ ∈ argminH f , it holds that

f(x(t)) −minH f = O
(

e−2αθt
)

as t → +∞;

‖x(t)− x̄‖2 = O
(

e−2αθt
)

as t → +∞;

‖ẋ(t)‖2 = O
(

e−2αθt
)

as t → +∞.

Proof. Let x̄ ∈ argminH f and recall from Theorem 3.1(i)
that, for every t ≥ 0, we have

1

2

d

dt
‖x(t)− x̄‖2 + θ

(

f(x(t)) −minH f
)

≤ 0.

In view of condition (QG), we obtain

1

2

d

dt
‖x(t)− x̄‖2 + αθ‖x(t) − x̄‖2 ≤ 0.

Multiplying the above inequality by e2αθt gives

1

2

d

dt

(

e2αθt‖x(t)− x̄‖2
)

≤ 0.

Successively integrating over [0, t] and dividing by e2αθt/2
entails

‖x(t)− x̄‖2 ≤ e−2αθt‖x(0)− x̄‖2.

On the other hand, by virtue of condition (C) and the
Cauchy–Schwarz inequality, we have

f(x(t)) −minH f ≤
1

θ
‖∇f(x(t))‖‖x(t)− x̄‖.

Observing that ∇f is Lipschitz continuous on the bounded
subsets of H, there exists L ≥ 0 such that

‖∇f(x(t))‖ ≤ L‖x(t)− x̄‖.

Combining the above inequalities yields

f(x(t)) −minH f ≤
L

θ
‖x(t)− x̄‖2

and thus,

f(x(t))−minH f ≤
L

θ
e−2αθt‖x(0)− x̄‖2.

Moreover, in view of (SD) and the above derivations, we
readily obtain

‖ẋ(t)‖ ≤ L e−αθt‖x(0)− x̄‖,

concluding the desired estimates.

5. NUMERICAL EXPERIMENT

In this section, we provide a simple, yet representative,
example that allows for a direct exposition of our main re-
sults.

Example 5.1. LetH = R
2 and consider the convex-like po-

tential f : R2 → R defined by

f(x) =

{

φ(x)‖x‖2, x 6= 0,

0, x = 0

with φ ∈ C1(R2 \ {0};R) taking the form φ(x) = (1/2 +
ε cos(k arg x)) for some ε ∈ ]0, 1/2[ and k ≥ 3. Here, arg x
denotes the polar angle of x 6= 0, that is, x = r(cosϑ, sinϑ)
with r = ‖x‖ and ϑ = arg x ∈ ] − π, π]. Clearly, f admits
the unique minimizer x̄ = 0 with minR2 f = 0. Moreover,
for every x 6= 0, it holds that∇f(x) = 2φ(x)x+‖x‖2∇φ(x)
with

∇φ(x) =
1

‖x‖
∂ϑφ(x)(− sin ϑ, cosϑ)

and ∂ϑφ(x) = −εk sin(kϑ) for x = r(cosϑ, sinϑ). Conse-
quently, for every x 6= 0, we have

‖∇f(x)‖ = ‖x‖

√

(

2φ(x)
)2

+
(

∂ϑφ(x)
)2

≤ ‖x‖
√

(1 + 2ε)2 + (εk)2,

which clearly implies that ∇f(x) tends to zero as x → 0.
Upon defining ∇f(0) := 0, we infer that ∇f is continuous
(in fact, Lipschitz continuous on bounded sets) and thus
f ∈ C1(R2;R).

On the other hand, f is positively 2-homogeneous, that
is, f(λx) = λ2f(x) holds for every x ∈ R

2 and λ > 0. As
f is continuously differentiable, Euler’s identity gives, for
every x ∈ R

2,

〈∇f(x), x − x̄〉 = 2f(x),

implying that condition (C) holds with equality and θ = 2.
Moreover, since φ(x) ≥ 1/2− ε for every x ∈ R

2, we have

f(x) ≥
(1

2
− ε

)

‖x− x̄‖2,

so that condition (QG) is verified with α = 1/2 − ε. Fig-
ure 1 depicts the evolution of a solution x(t) of the (SD)
differential system for the convex-like potential f , with
parameters ε = 1/4 and k = 4, and initial data x0 = (1, 2).

Analyzing Figure 1, we observe that the solutions x(t) of
(SD) converge, as t → +∞, to the unique minimizer x̄ of
f ; cf. Proposition 3.4. Moreover, since f verifies both con-
ditions (C) and (QG), we find that ‖x(t)− x̄‖2 evolves ac-
cording to the estimate O

(

e−2αθt
)

as t → +∞; cf. Propo-
sition 4.3. A similar behavior is observed numerically for
the quantities f(x(t)) −minR2 f and ‖ẋ(t)‖2.

APPENDIX

For the following classical result, named the Opial lemma,
the reader is referred to Opial (1967).



x0

x̄

x(t)

(a) Trajectories {x(t) : t ≥ 0}

O
(

e−2αθt
)

(b) Evolution of ‖x(t) − x̄‖2/2

Fig. 1. (a) Graphical view on the trajectories of solutions
x(t) of (SD) for different initial conditions, overlaid
with contour lines of the sublevel sets of f .
(b) Semilogarithmic view on ‖x(t)− x̄‖2/2 for the cor-
responding initial data together with the asymptotic
estimate O

(

e−2αθt
)

as t → +∞.

Lemma A.1. (Opial). Let H be a real Hilbert space and
let x : [0,+∞[ → H be such that there exists a nonempty
subset S of H which verifies

(i) for every x̄ ∈ S, limt→+∞‖x(t)− x̄‖ exists;
(ii) ∀tn → +∞ such that x(tn) ⇀ x̄ weakly in H as n →

+∞, it holds that x̄ ∈ S.

Then x(t) converges weakly, as t → +∞, to some element
x̄ ∈ S.
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