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Problem statement

Let X, Y be real Hilbert spaces endowed with inner products (-, - )x,
(-, )y and induced norms || - ||x, || - ||v-

Problem. Consider the minimization problem

minimize f(z) subject to h(x) = Oy. (P)

e f: X — Ris convex and continuously differentiable
e h: X — Y is continuous and affine

{reX | f(z)<v}

{z € X | h(z) =0y}



The Arrow—Hurwicz differential system

Arrow—Hurwicz differential system. We reconsider the classical first-
order evolution system?

{:@ + Vf(z)+h(x)*A = 0x

A —h(z) =0y (AH)

in view of solving the convex minimization problem (P).

gra L

L:XxY—R
(2, A) = f(z) + (A h(2))y

1K. J. Arrow and L. Hurwicz, A gradient method for approximating saddle points
and constrained maxima, RAND Corp., Santa Monica, CA, pp. p-223, 1951.
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Preliminaries

Let us associate with (P) the Lagrangian

L:XxY—R
(2, A) = f(z) + (A h(@))y

Definition. A pair (Z,\) € X x Y is a saddle point of L if
L(Z,\) < L(Z,A) < L(z,\) V(z,A\) € X xY.

We denote by S x M C X X Y the set of saddle points of L.
Assumptions.
e f: X — Ris convex and continuously differentiable
e Vf:X — X is Lipschitz continuous on bounded sets
e A:X — Y is linear and continuous, b € Y, and
h: X —Y
x— Ax —b



(Maximal) monotonicity

Given our basic assumptions, we have the following important property
concerning the (AH) differential system:

2

Main feature. (Maximal) monotonicity of the “(AH) generator”

T: X XY —XXxY
(z,A) — (Vf(z) + A"\, b — Ax).

2R. T. Rockafellar, Monotone operators associated with saddle-functions and mini-
max problems, in Nonlinear Functional Analysis, Amer. Math. Soc., pp. 241-250, 1969.



Integrability estimate

Consider the “primal-dual gap function” (relative to S x M)
t— L(x(t), -) = L(-, A(t))
as a natural measure of optimality.

Proposition. Let Sx M be non-empty and let (z, A) : [0, +00) — X xY
be a solution of (AH). Then, for any (§,n) € S x M, it holds that

/OOO L(@(r),m) — L€, \(7)) d < +o0.

Define the Cesaro average of a solution (z, A) of (AH) as

(o,w): (0,400) — X xY

t— ¢ [ @A) ar.
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Weak ergodic convergence

Theorem. Let S x M be non-empty and let (o,w) : (0, +00) = X XY
be the Cesaro average of a solution of (AH). Then, for any (£,7m) €
S x M, it holds that

L(o(t),n) — L&, w(t)) = o(%) as t — +oo.




Localization of the weak limit
Given a bounded solution (x, \) of (AH), consider®

¢@W=%ﬁgNﬂmMm—@mW-

Proposition. Let S x M be non-empty and let (,@) € S x M be such
that (o(t),w(t)) — (,w) weakly in X x Y as ¢t — 4+00. Then,

¢(o,w0) <p(&n) V(En) € X XY

3M. Edelstein, The construction of an asymptotic center with a fixed-point
property, Bull. Amer. Math. Soc., 78:206-208, 1972.



Numerical experiment

lllustration.

{(o(t),w(®)) | £ >0} (e (t),w(t)) = (7, )]l
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Refined ergodic estimates

Let us assume that A: X — Y is bounded from below, i.e.,

IB>0Vee X, |Az|y > Bzl x.
Proposition. Let S x M be non-empty, let A : X — Y be bounded

from below, and let (o,w) : (0,+00) = X X Y be the Cesaro average
of a solution of (AH). Then, for any (§,7) € S x M, it holds that

L(o(),n) — L(€, w(t)) = o(tlz) 5§ = s

lo(t) — €]l x = o(%) 56— s,

e

e ... unique minimizer of (P)

. affine subspace of Lagrange multipliers
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Numerical experiment

llustration.

QI

Zo

{o(®) |t >0}
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A Liénard-type differential system
The Arrow—Hurwicz differential system (AH) admits an equivalent
second-order representation in terms of the

Liénard-type inertial dynamics. Consider the second-order evolution
system*
&+ V2 f(2)i + VIh(2)]5/2 = 0x (ID)

relative to the convex minimization problem (P).

X

7 spring —

mass

4A. Liénard, Etude des oscillations entretenues, Rev. gén. d'électr., 23:901-912
and 946-954, 1928.
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Link between the dynamics

We have the following relation between the Arrow—Hurwicz differential
system (AH) and the Liénard-type inertial dynamics (ID):

Connection. fec?

=

&+ V() + W (z)A=0
{ f(x) )}—(h)(x)z()j &+ V2f(2)3 + V||h(z)|F/2 = 0x

=~

h'(+) surjective
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Thank you for your attention!
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