

Ergodic convergence results for the Arrow–Hurwicz differential system

Simon K. Niederländer

Autonomous Systems and Control
Siemens Technology

62nd IEEE Conference on Decision and Control
Singapore, December 15, 2023

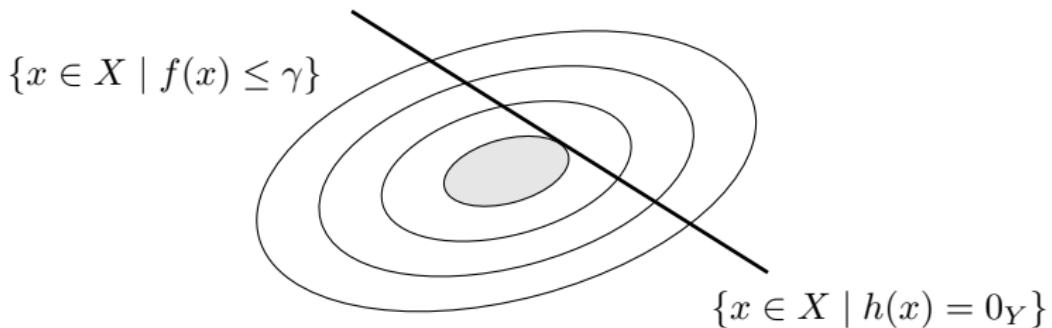
Problem statement

Let X, Y be real Hilbert spaces endowed with inner products $\langle \cdot, \cdot \rangle_X$, $\langle \cdot, \cdot \rangle_Y$ and induced norms $\|\cdot\|_X$, $\|\cdot\|_Y$.

Problem. Consider the minimization problem

$$\text{minimize } f(x) \quad \text{subject to } h(x) = 0_Y. \quad (\text{P})$$

- $f : X \rightarrow \mathbb{R}$ is convex and continuously differentiable
- $h : X \rightarrow Y$ is continuous and affine

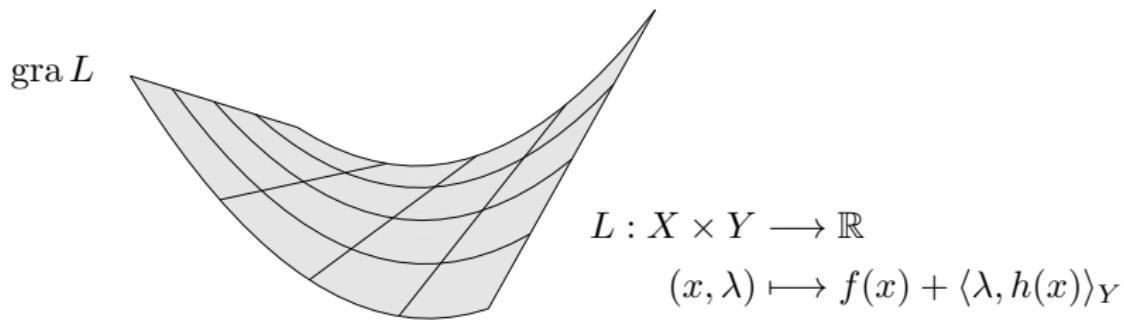


The Arrow–Hurwicz differential system

Arrow–Hurwicz differential system. We reconsider the classical first-order evolution system¹

$$\begin{cases} \dot{x} + \nabla f(x) + h'(x)^* \lambda = 0_X \\ \dot{\lambda} - h(x) = 0_Y \end{cases} \quad (\text{AH})$$

in view of solving the convex minimization problem (P).



¹K. J. Arrow and L. Hurwicz, *A gradient method for approximating saddle points and constrained maxima*, RAND Corp., Santa Monica, CA, pp. p-223, 1951.

Outline

Introduction

Basic properties

(Maximal) monotonicity, integrability estimate, ...

Weak ergodic convergence

Limiting average behavior, localization of the weak limit, ...

Refined ergodic estimates

“Primal-dual gap function”, refined asymptotics, ...

Further extension

Liénard-type inertial dynamics, ...

Conclusions

Outline

Introduction

Basic properties

(Maximal) monotonicity, integrability estimate, ...

Weak ergodic convergence

Limiting average behavior, localization of the weak limit, ...

Refined ergodic estimates

“Primal-dual gap function”, refined asymptotics, ...

Further extension

Liénard-type inertial dynamics, ...

Conclusions

Preliminaries

Let us associate with (P) the *Lagrangian*

$$L : X \times Y \longrightarrow \mathbb{R}$$

$$(x, \lambda) \longmapsto f(x) + \langle \lambda, h(x) \rangle_Y.$$

Definition. A pair $(\bar{x}, \bar{\lambda}) \in X \times Y$ is a *saddle point* of L if

$$L(\bar{x}, \lambda) \leq L(\bar{x}, \bar{\lambda}) \leq L(x, \bar{\lambda}) \quad \forall (x, \lambda) \in X \times Y.$$

We denote by $S \times M \subset X \times Y$ the set of saddle points of L .

Assumptions.

- $f : X \rightarrow \mathbb{R}$ is convex and continuously differentiable
- $\nabla f : X \rightarrow X$ is Lipschitz continuous on bounded sets
- $A : X \rightarrow Y$ is linear and continuous, $b \in Y$, and

$$h : X \longrightarrow Y$$

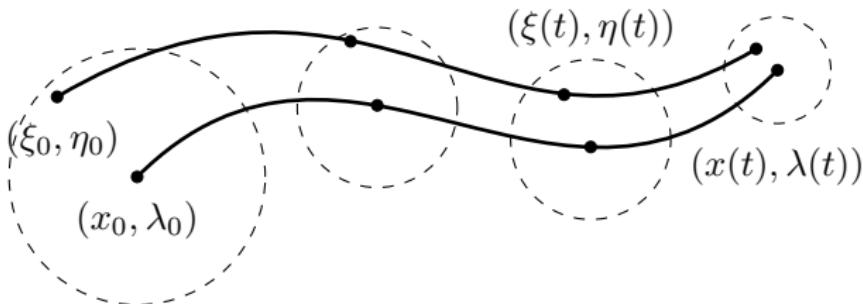
$$x \longmapsto Ax - b$$

(Maximal) monotonicity

Given our basic assumptions, we have the following important property concerning the (AH) differential system:

Main feature. *(Maximal) monotonicity of the “(AH) generator”*²

$$T : X \times Y \longrightarrow X \times Y$$
$$(x, \lambda) \longmapsto (\nabla f(x) + A^* \lambda, b - Ax).$$



²R. T. Rockafellar, *Monotone operators associated with saddle-functions and minimax problems*, in Nonlinear Functional Analysis, Amer. Math. Soc., pp. 241-250, 1969.

Integrability estimate

Consider the “primal-dual gap function” (relative to $S \times M$)

$$t \longmapsto L(x(t), \cdot) - L(\cdot, \lambda(t))$$

as a natural measure of optimality.

Proposition. Let $S \times M$ be non-empty and let $(x, \lambda) : [0, +\infty) \rightarrow X \times Y$ be a solution of (AH). Then, for any $(\xi, \eta) \in S \times M$, it holds that

$$\int_0^\infty L(x(\tau), \eta) - L(\xi, \lambda(\tau)) \, d\tau < +\infty.$$

Define the *Cesàro average* of a solution (x, λ) of (AH) as

$$(\sigma, \omega) : (0, +\infty) \longrightarrow X \times Y$$

$$t \longmapsto \frac{1}{t} \int_0^t (x(\tau), \lambda(\tau)) \, d\tau.$$

Outline

Introduction

Basic properties

(Maximal) monotonicity, integrability estimate, ...

Weak ergodic convergence

Limiting average behavior, localization of the weak limit, ...

Refined ergodic estimates

“Primal-dual gap function”, refined asymptotics, ...

Further extension

Liénard-type inertial dynamics, ...

Conclusions

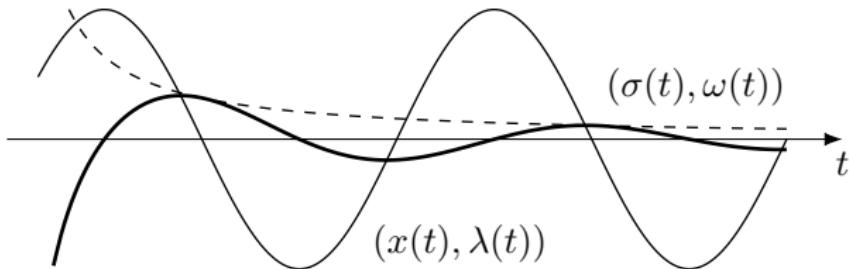
Weak ergodic convergence

Theorem. Let $S \times M$ be non-empty and let $(\sigma, \omega) : (0, +\infty) \rightarrow X \times Y$ be the Cesàro average of a solution of (AH). Then, for any $(\xi, \eta) \in S \times M$, it holds that

$$L(\sigma(t), \eta) - L(\xi, \omega(t)) = \mathcal{O}\left(\frac{1}{t}\right) \text{ as } t \rightarrow +\infty.$$

Moreover, there exists $(\bar{\sigma}, \bar{\omega}) \in S \times M$ such that $(\sigma(t), \omega(t)) \rightharpoonup (\bar{\sigma}, \bar{\omega})$ weakly in $X \times Y$ as $t \rightarrow +\infty$.

Corollary. If $S \times M$ is empty, then $\lim_{t \rightarrow +\infty} \|(\sigma(t), \omega(t))\| = +\infty$.



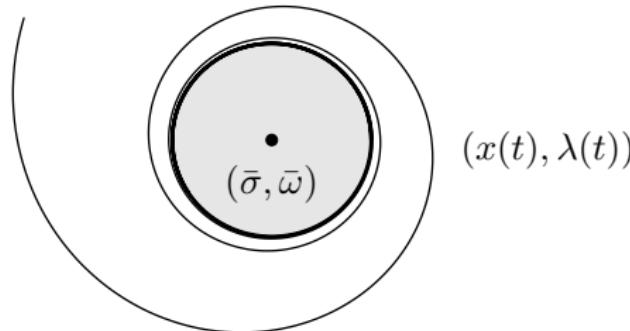
Localization of the weak limit

Given a *bounded* solution (x, λ) of (AH), consider³

$$\phi(\xi, \eta) = \limsup_{t \rightarrow +\infty} \|(x(t), \lambda(t)) - (\xi, \eta)\|^2.$$

Proposition. Let $S \times M$ be non-empty and let $(\bar{\sigma}, \bar{\omega}) \in S \times M$ be such that $(\sigma(t), \omega(t)) \rightharpoonup (\bar{\sigma}, \bar{\omega})$ weakly in $X \times Y$ as $t \rightarrow +\infty$. Then,

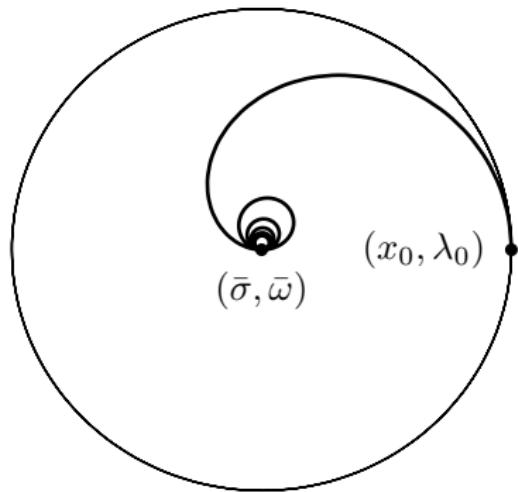
$$\phi(\bar{\sigma}, \bar{\omega}) \leq \phi(\xi, \eta) \quad \forall (\xi, \eta) \in X \times Y.$$



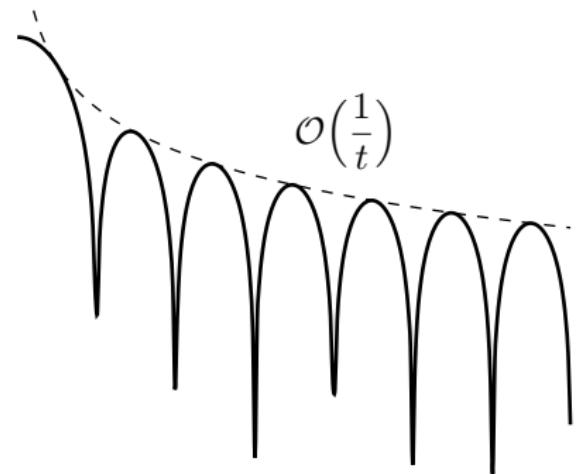
³M. Edelstein, *The construction of an asymptotic center with a fixed-point property*, Bull. Amer. Math. Soc., 78:206-208, 1972.

Numerical experiment

Illustration.



$$\{(\sigma(t), \omega(t)) \mid t > 0\}$$



$$\|(\sigma(t), \omega(t)) - (\bar{\sigma}, \bar{\omega})\|$$

Outline

Introduction

Basic properties

(Maximal) monotonicity, integrability estimate, ...

Weak ergodic convergence

Limiting average behavior, localization of the weak limit, ...

Refined ergodic estimates

“Primal-dual gap function”, refined asymptotics, ...

Further extension

Liénard-type inertial dynamics, ...

Conclusions

Refined ergodic estimates

Let us assume that $A : X \rightarrow Y$ is bounded from below, i.e.,

$$\exists \beta > 0 \ \forall x \in X, \quad \|Ax\|_Y \geq \beta \|x\|_X.$$

Proposition. Let $S \times M$ be non-empty, let $A : X \rightarrow Y$ be bounded from below, and let $(\sigma, \omega) : (0, +\infty) \rightarrow X \times Y$ be the Cesàro average of a solution of (AH). Then, for any $(\xi, \eta) \in S \times M$, it holds that

$$L(\sigma(t), \eta) - L(\xi, \omega(t)) = \mathcal{O}\left(\frac{1}{t^2}\right) \text{ as } t \rightarrow +\infty;$$

$$\|\sigma(t) - \xi\|_X = \mathcal{O}\left(\frac{1}{t}\right) \text{ as } t \rightarrow +\infty.$$

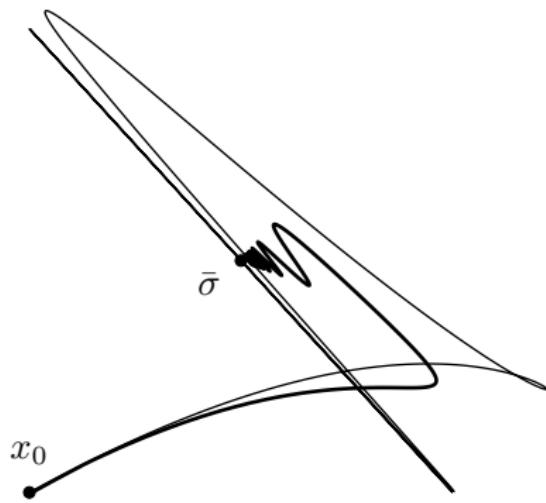
Implication.

$$S \times M = \left\{ \bullet \right\} \times \left\{ \text{shaded rectangle} \right\}$$

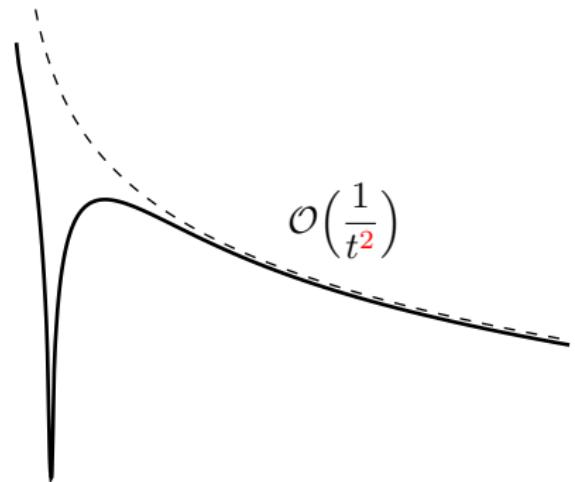
- ... unique minimizer of (P)
- ... affine subspace of Lagrange multipliers

Numerical experiment

Illustration.



$$\{\sigma(t) \mid t > 0\}$$



$$L(\sigma(t), \bar{\omega}) - L(\bar{\sigma}, \omega(t))$$

Outline

Introduction

Basic properties

(Maximal) monotonicity, integrability estimate, ...

Weak ergodic convergence

Limiting average behavior, localization of the weak limit, ...

Refined ergodic estimates

“Primal-dual gap function”, refined asymptotics, ...

Further extension

Liénard-type inertial dynamics, ...

Conclusions

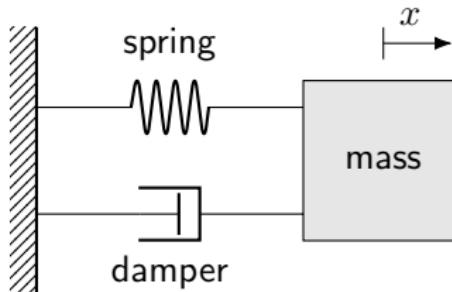
A Liénard-type differential system

The Arrow–Hurwicz differential system (AH) admits an equivalent second-order representation in terms of the

Liénard-type inertial dynamics. Consider the second-order evolution system⁴

$$\ddot{x} + \nabla^2 f(x)\dot{x} + \nabla \|h(x)\|_Y^2/2 = 0_X \quad (\text{ID})$$

relative to the convex minimization problem (P).



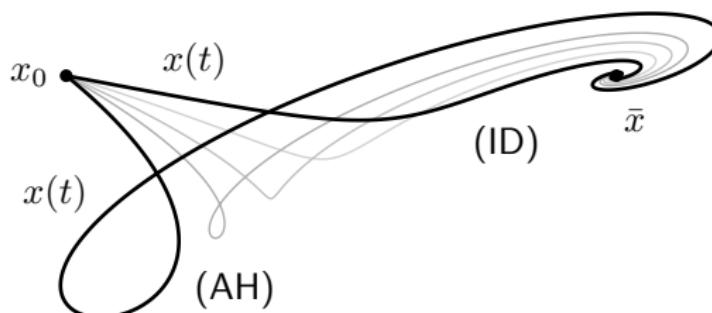
⁴A. Liénard, *Étude des oscillations entretenues*, Rev. gén. d'électr., 23:901-912 and 946-954, 1928.

Link between the dynamics

We have the following relation between the Arrow–Hurwicz differential system (AH) and the Liénard-type inertial dynamics (ID):

Connection.

$$\begin{array}{ccc} f \in \mathcal{C}^2 & & \\ \curvearrowright & & \\ \left\{ \begin{array}{l} \dot{x} + \nabla f(x) + h'(x)^* \lambda = 0_X \\ \dot{\lambda} - h(x) = 0_Y \end{array} \right. & & \ddot{x} + \nabla^2 f(x) \dot{x} + \nabla \|h(x)\|_Y^2 / 2 = 0_X \\ & & \curvearrowleft \\ & h'(\cdot) \text{ surjective} & \end{array}$$



Outline

Introduction

Basic properties

(Maximal) monotonicity, integrability estimate, ...

Weak ergodic convergence

Limiting average behavior, localization of the weak limit, ...

Refined ergodic estimates

“Primal-dual gap function”, refined asymptotics, ...

Further extension

Liénard-type inertial dynamics, ...

Conclusions

Thank you for your attention!

