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Problem statement

Let X,Y be real Hilbert spaces endowed with inner products 〈 · , · 〉X ,
〈 · , · 〉Y and induced norms ‖ · ‖X , ‖ · ‖Y .

Problem. Consider the minimization problem

minimize f(x) subject to h(x) = 0Y . (P)

• f : X → R is convex and continuously differentiable

• h : X → Y is continuous and affine

{x ∈ X | f(x) ≤ γ}

{x ∈ X | h(x) = 0Y }
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The Arrow–Hurwicz differential system

Arrow–Hurwicz differential system. We reconsider the classical first-
order evolution system1{

ẋ+∇f(x) + h′(x)∗λ = 0X

λ̇− h(x) = 0Y
(AH)

in view of solving the convex minimization problem (P).

graL

L : X × Y −→ R
(x, λ) 7−→ f(x) + 〈λ, h(x)〉Y

1K. J. Arrow and L. Hurwicz, A gradient method for approximating saddle points
and constrained maxima, RAND Corp., Santa Monica, CA, pp. p-223, 1951.
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Preliminaries

Let us associate with (P) the Lagrangian

L : X × Y −→ R
(x, λ) 7−→ f(x) + 〈λ, h(x)〉Y .

Definition. A pair (x̄, λ̄) ∈ X × Y is a saddle point of L if

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄) ∀(x, λ) ∈ X × Y.

We denote by S ×M ⊂ X × Y the set of saddle points of L.

Assumptions.

• f : X → R is convex and continuously differentiable

• ∇f : X → X is Lipschitz continuous on bounded sets

• A : X → Y is linear and continuous, b ∈ Y , and

h : X −→ Y

x 7−→ Ax− b
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(Maximal) monotonicity

Given our basic assumptions, we have the following important property
concerning the (AH) differential system:

Main feature. (Maximal) monotonicity of the “(AH) generator”2

T : X × Y −→ X × Y
(x, λ) 7−→ (∇f(x) +A∗λ, b−Ax).

(x0, λ0)

(ξ0, η0)
(x(t), λ(t))

(ξ(t), η(t))

2R. T. Rockafellar, Monotone operators associated with saddle-functions and mini-
max problems, in Nonlinear Functional Analysis, Amer. Math. Soc., pp. 241-250, 1969.
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Integrability estimate

Consider the “primal-dual gap function” (relative to S ×M)

t 7−→ L(x(t), · )− L( · , λ(t))

as a natural measure of optimality.

Proposition. Let S×M be non-empty and let (x, λ) : [0,+∞)→ X×Y
be a solution of (AH). Then, for any (ξ, η) ∈ S ×M , it holds that∫ ∞

0

L(x(τ), η)− L(ξ, λ(τ)) dτ < +∞.

Define the Cesàro average of a solution (x, λ) of (AH) as

(σ, ω) : (0,+∞) −→ X × Y

t 7−→ 1

t

∫ t

0

(x(τ), λ(τ)) dτ .
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Weak ergodic convergence

Theorem. Let S×M be non-empty and let (σ, ω) : (0,+∞)→ X×Y
be the Cesàro average of a solution of (AH). Then, for any (ξ, η) ∈
S ×M , it holds that

L(σ(t), η)− L(ξ, ω(t)) = O
(1

t

)
as t→ +∞.

Moreover, there exists (σ̄, ω̄) ∈ S ×M such that (σ(t), ω(t)) ⇀ (σ̄, ω̄)
weakly in X × Y as t→ +∞.

Corollary. If S ×M is empty, then limt→+∞‖(σ(t), ω(t))‖ = +∞.

t

(x(t), λ(t))

(σ(t), ω(t))
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Localization of the weak limit

Given a bounded solution (x, λ) of (AH), consider3

φ(ξ, η) = lim sup
t→+∞

‖(x(t), λ(t))− (ξ, η)‖2.

Proposition. Let S×M be non-empty and let (σ̄, ω̄) ∈ S×M be such
that (σ(t), ω(t)) ⇀ (σ̄, ω̄) weakly in X × Y as t→ +∞. Then,

φ(σ̄, ω̄) ≤ φ(ξ, η) ∀(ξ, η) ∈ X × Y.

(x(t), λ(t))
(σ̄, ω̄)

3M. Edelstein, The construction of an asymptotic center with a fixed-point
property, Bull. Amer. Math. Soc., 78:206-208, 1972.
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Numerical experiment

Illustration.

(x0, λ0)
(σ̄, ω̄)

{(σ(t), ω(t)) | t > 0}

O
(1

t

)

‖(σ(t), ω(t))− (σ̄, ω̄)‖

9



Outline

Introduction

Basic properties
(Maximal) monotonicity, integrability estimate, . . .

Weak ergodic convergence
Limiting average behavior, localization of the weak limit, . . .

Refined ergodic estimates
“Primal-dual gap function”, refined asymptotics, . . .

Further extension
Liénard-type inertial dynamics, . . .

Conclusions



Refined ergodic estimates

Let us assume that A : X → Y is bounded from below, i.e.,

∃β > 0 ∀x ∈ X, ‖Ax‖Y ≥ β‖x‖X .

Proposition. Let S ×M be non-empty, let A : X → Y be bounded
from below, and let (σ, ω) : (0,+∞) → X × Y be the Cesàro average
of a solution of (AH). Then, for any (ξ, η) ∈ S ×M , it holds that

L(σ(t), η)− L(ξ, ω(t)) = O
( 1

t2

)
as t→ +∞;

‖σ(t)− ξ‖X = O
(1

t

)
as t→ +∞.

Implication.
S ×M =

{ }
×
{ }

. . . unique minimizer of (P)

. . . affine subspace of Lagrange multipliers
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Numerical experiment

Illustration.

x0

σ̄

{σ(t) | t > 0}

O
( 1

t2

)

L(σ(t), ω̄)− L(σ̄, ω(t))
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A Liénard-type differential system

The Arrow–Hurwicz differential system (AH) admits an equivalent
second-order representation in terms of the

Liénard-type inertial dynamics. Consider the second-order evolution
system4

ẍ+∇2f(x)ẋ+∇‖h(x)‖2Y /2 = 0X (ID)

relative to the convex minimization problem (P).

spring

damper

mass

x

4A. Liénard, Étude des oscillations entretenues, Rev. gén. d’électr., 23:901-912
and 946-954, 1928.

12



Link between the dynamics

We have the following relation between the Arrow–Hurwicz differential
system (AH) and the Liénard-type inertial dynamics (ID):

Connection.

{
ẋ+∇f(x) + h′(x)∗λ = 0X

λ̇− h(x) = 0Y
ẍ+∇2f(x)ẋ+∇‖h(x)‖2Y /2 = 0X

f ∈ C2

h′( · ) surjective

x0 x(t)

x(t)

x̄
(ID)

(AH)
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Thank you for your attention!
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