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Problem statement

Let X,Y be real Hilbert spaces endowed with inner products 〈 · , · 〉X ,
〈 · , · 〉Y and associated norms ‖ · ‖X , ‖ · ‖Y .

Problem. Consider the saddle-value problem

inf
x∈X

sup
λ∈Y

Lt(x, λ), (Pt)

where for each t ≥ 0, Lt : X × Y → R is a convex-concave and con-
tinuously differentiable bifunction.

graLt
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The Arrow–Hurwicz differential system

Arrow–Hurwicz differential system. We consider the nonautonomous
evolution system1 {

ẋ+∇xLt(x, λ) = 0

λ̇−∇λLt(x, λ) = 0
(NAH)

relative to the saddle-value problem (Pt).

We say that (x, λ) : [0,+∞[ → X × Y is a (classical) solution of (NAH)
if (x, λ) ∈ C1([0,+∞[) such that (NAH) is satisfied on [0,+∞[.

(x0, λ0)

(ξ0, η0)
(x(t), λ(t))

(ξ(t), η(t))

1K. J. Arrow and L. Hurwicz, A gradient method for approximating saddle points
and constrained maxima, RAND Corp., Santa Monica, CA, pp. p-223, 1951.

3



Outline

Introduction

Preliminary results
Integrability estimate, “no-regret condition”, . . .

Weak ergodic convergence
Gap function, asymptotic average, . . .

Weak convergence
Strict convexity-concavity, . . .

Application and extension
Tikhonov regularization, . . .

Conclusions



Outline

Introduction

Preliminary results
Integrability estimate, “no-regret condition”, . . .

Weak ergodic convergence
Gap function, asymptotic average, . . .

Weak convergence
Strict convexity-concavity, . . .

Application and extension
Tikhonov regularization, . . .

Conclusions



Preliminaries

Proposition. Let (x, λ) : [0,+∞[ → X × Y be a solution of (NAH).
Then, for every (ξ, η) ∈ X × Y , it holds that

lim sup
t→+∞

∫ t

0

Lτ (x(τ), η)− Lτ (ξ, λ(τ)) dτ < +∞.

Remark (“No-regret condition”). For every t ≥ 0, let the “regret
function” Regrett : X × Y → R be defined by

Regrett(ξ, η) =

∫ t

0

Lτ (x(τ), η)− Lτ (ξ, λ(τ)) dτ .

Then, for every (ξ, η) ∈ X × Y , we have

Regrett(ξ, η) ≤ O(t) as t→ +∞.
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Preparatory result

Proposition. Let (x, λ) : [0,+∞[ → X × Y be a solution of (NAH)
and suppose that there exists a closed convex-concave bifunction2 L∞ :
X × Y → R such that for every (ξ, η) ∈ X × Y ,

Lt( · , η)− Lt(ξ, · )→ L∞( · , η)− L∞(ξ, · )
uniformly on X × Y as t→ +∞.

If (x̄, λ̄) ∈ X × Y is such that (x(t), λ(t)) → (x̄, λ̄) strongly in X × Y
as t→ +∞, then, for every (ξ, η) ∈ X × Y ,

L∞(x̄, η) ≤ L∞(x̄, λ̄) ≤ L∞(ξ, λ̄).

Remark. If Lt tends to L∞ (in the above sense) as t→ +∞, then the
limit of a solution of (NAH) is necessarily a saddle point of L∞.

2For each (ξ, η) ∈ X × Y , the functions L∞( · , η) and −L∞(ξ, · ) are convex and
lower semicontinuous.
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Gap function

Assumption. Suppose there exists a closed convex-concave bifunction
L∞ : X × Y → R with a non-empty set of saddle points S ×M such
that the gap function GAPLt−L∞ : X × Y → R ∪ {+∞} defined by

GAPLt−L∞(ξ, η) = sup
µ∈Y

(
Lt(ξ, µ)− L∞(ξ, µ)

)
− inf
ν∈X

(
Lt(ν, η)− L∞(ν, η)

)
vanishes “sufficiently fast” as t→ +∞.

graLt

graL∞
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Weak ergodic convergence

Theorem. Let (x, λ) : [0,+∞[ → X × Y be a solution of (NAH)
and suppose that there exists a closed convex-concave bifunction L∞ :
X × Y → R with a non-empty set of saddle points S ×M such that

∀(ξ, η) ∈ X × Y,
∫ ∞
0

GAPLτ−L∞(ξ, η) dτ < +∞.

Then there exists (x̄, λ̄) ∈ S ×M such that

w − lim
t→+∞

1

t

∫ t

0

(x(τ), λ(τ)) dτ = (x̄, λ̄).

t

(x(t), λ(t))

1

t

∫ t

0

(x(τ), λ(τ)) dτ
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Numerical experiment

Example. Let X,Y = R and consider, for every t ≥ 0,

Lt(x, λ) =
e−t

2
(x2 − y2) + (λ− 1)(x− 1),

so that L∞(x, λ) = (λ− 1)(x− 1) with S ×M = {(1, 1)} and
GAPLt−L∞(ξ, η) = e−t‖(ξ, η)‖2/2.

Illustration.

(x(0), λ(0))(x̄, λ̄)
(x(t), λ(t))

1

t

∫ t

0

(x(τ), λ(τ)) dτ
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Weak convergence

Theorem. Let (x, λ) : [0,+∞[ → X × Y be a solution of (NAH)
and suppose that there exists a closed convex-concave bifunction L∞ :
X × Y → R with a non-empty set of saddle points S ×M such that

∀(ξ, η) ∈ X × Y,
∫ ∞
0

GAPLτ−L∞(ξ, η) dτ < +∞.

Assume, in addition, that the bifunction L∞ is such that for all (x̄, λ̄) ∈
S ×M and (ξ, η) /∈ S ×M ,3

L∞(x̄, η) < L∞(x̄, λ̄) < L∞(ξ, λ̄).

Then there exists (x̄, λ̄) ∈ S ×M such that

w − lim
t→+∞

(x(t), λ(t)) = (x̄, λ̄).

3R. T. Rockafellar, Saddle-points and convex analysis, in Differential Games and
Related Topics, North-Holland, pp. 109-127, 1971.
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Numerical experiment

Example. Let X,Y = R and consider now, for every t ≥ 0,

Kt(x, λ) = Lt(x, λ) +
1

2
(x− 1)2 − 1

2
(λ− 1)2,

so that K∞(x, λ) = L∞ + (x− 1)2/2− (λ− 1)2/2, S ×M = {(1, 1)},
and GAPKt−K∞(ξ, η) = GAPLt−L∞(ξ, η).

Illustration.

(x(0), λ(0))(x̄, λ̄)
(x(t), λ(t))

1

t

∫ t

0

(x(τ), λ(τ)) dτ
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Tikhonov regularization

Let ε : [0,+∞[ → ]0,+∞[ be continuously differentiable such that

lim
t→+∞

ε(t) = 0.

Arrow–Hurwicz differential system with Tikhonov regularization.
Consider the nonautonomous evolution system{

ẋ+∇xL(x, λ) + ε(t)x = 0

λ̇−∇λL(x, λ) + ε(t)λ = 0
(AHT)

in view of solving the saddle-value problem (Pt).

This amounts to the mini-maximization of

Lt : X × Y −→ R
(x, λ) 7−→ L(x, λ) +

ε(t)

2

(
‖x‖2X − ‖λ‖2Y

)
,

where L : X × Y → R is a convex-concave and continuously differen-
tiable bifunction (with a non-empty set of saddle points S ×M).
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Associated gap function

The gap function GAPLt−L : X × Y → R ∪ {+∞} reduces to

GAPLt−L(ξ, η) = sup
µ∈Y

(
Lt(ξ, µ)− L(ξ, µ)

)
− inf
ν∈X

(
Lt(ν, η)− L(ν, η)

)
=
ε(t)

2
‖(ξ, η)‖2.

Corollary. Let S×M be non-empty, let (x, λ) : [0,+∞[→ X×Y be a
solution of (AHT), and suppose that ε ∈ L1([0,+∞[). Then there ex-
ists (x̄, λ̄) ∈ S ×M such that

w − lim
t→+∞

1

t

∫ t

0

(x(τ), λ(τ)) dτ = (x̄, λ̄).

If, moreover, L is “strictly convex-concave”, then

w − lim
t→+∞

(x(t), λ(t)) = (x̄, λ̄).
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The particular case ε /∈ L1([0,+∞[)

Proposition. Let S ×M be non-empty, let (x, λ) : [0,+∞[ → X × Y
be a solution of (AHT), and suppose that ε /∈ L1([0,+∞[) with either
ε̇ ∈ L1([0,+∞[) or |ε̇|2/ε ∈ L1([0,+∞[). Then it holds that4

lim
t→+∞

(x(t), λ(t)) = projS×M (0, 0).

projS×M (0, 0)

S ×M
(0, 0)

4F. Battahi, Z. Chbani, S. K. Niederländer, and H. Riahi, Asymptotic behavior of
the Arrow–Hurwicz differential system with Tikhonov regularization, (2024), available
at https://arxiv.org/abs/2411.17656.
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Numerical experiment

Example. Let X,Y = R, take L(x, λ) = λ(x− 1), and consider the Tik-
honov regularization function ε(t) = 1/tp with p ∈ ]0, 1] and t0 > 0. The
(AHT) differential system reduces to ẋ+ λ+

x

tp
= 0

λ̇+ 1− x+
λ

tp
= 0.

Illustration. (x(t0), λ(t0))
(x̄, λ̄)

(x(t), λ(t))
p
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Conclusions

Case I. If the “nonautonomous part” of the (NAH) differential system
vanishes “sufficiently fast” as t→ +∞, then the asymptotic behavior is
characterized by the “autonomous part”:

(i) In general only weak ergodic convergence;

(ii) If “limiting saddle function” is strict, then weak convergence.

Case II. If the “nonautonomous part” of the (NAH) differential system
vanishes “sufficiently slow” as t→ +∞, then it asymptotically dominates
the “autonomous part”.
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Thank you for your attention!
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