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Problem statement

Let X,Y be real Hilbert spaces endowed with inner products (-, - )x,
(-, -)y and associated norms || ||x, || - |lv-

Problem. Consider the saddle-value problem

inf sup Ly(z, A P
o t(z, ), (P+)

where for each t > 0, L; : X x Y — R is a convex-concave and con-
tinuously differentiable bifunction.

gra L,



The Arrow—Hurwicz differential system

Arrow—Hurwicz differential system. We consider the nonautonomous
evolution system!

{¢+VmLt(x7/\) =0 (NAH)

A= VaLi(z,A) =0
relative to the saddle-value problem (P;).

We say that (z,\) : [0, +00[ = X X Y is a (classical) solution of (NAH)
if (z,\) € C1([0, +00]) such that (NAH) is satisfied on [0, +ool.

1K. J. Arrow and L. Hurwicz, A gradient method for approximating saddle points
and constrained maxima, RAND Corp., Santa Monica, CA, pp. p-223, 1951.
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Preliminaries

Proposition. Let (z,\) : [0,4+00[ — X X Y be a solution of (NAH).
Then, for every (£,m) € X x Y, it holds that

limsup/0 L. (x(1),n) — L (& A(7)) dr < +o0.

t——+oo

Remark (“No-regret condition”). For every ¢ > 0, let the “regret
function” Regret, : X x Y — R be defined by

Regret, (&, n) = /0 Ly (z(7),m) — L (§,A(7)) dT.

Then, for every (§,17) € X x Y, we have

Regret, (&,m) < o(t) as t — +o0.



Preparatory result

Proposition. Let (x,)) : [0,400] = X X Y be a solution of (NAH)
and suppose that there exists a closed convex-concave bifunction® L :
X XY — R such that for every ({,7) € X XY,

Lt('an) 7Lt(§7 ) 4)Loo(777) 7L00(£7 )
uniformly on X X Y as t — 4o0.

If (Z,\) € X x Y is such that (x(t), A\(t)) — (, ) strongly in X x Y
as t — +00, then, for every (§,n) € X x Y,

Loo(Z,1) £ Loo(Z,A) £ Leo(, A).-

Remark. If L; tends to L (in the above sense) as t — oo, then the
limit of a solution of (NAH) is necessarily a saddle point of L.

2For each (£,m) € X x Y, the functions Leo(-,7) and —Loo (£, -) are convex and
lower semicontinuous.
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Gap function

Assumption. Suppose there exists a closed convex-concave bifunction
Ly : X xY — R with a non-empty set of saddle points .S x M such
that the gap function GAPy,_1__ : X XY — R U {+oc} defined by

GAPLt*Loo (57 7)) = sup (Lt(f, :U’) — Lo (57 :U’))
pey

— jnf (Li(v.n) = Loo(v,m))

vanishes “sufficiently fast” as t — +o0.

gra L,

gra L,



Weak ergodic convergence

Theorem. Let (z,)) : [0,+00[ - X X Y be a solution of (NAH)
and suppose that there exists a closed convex-concave bifunction L, :
X XY — R with a non-empty set of saddle points S x M such that

Ven € XxY, [ GAPL . (&n)dr <o
0

Then there exists (Z,)) € S x M such that




Numerical experiment

Example. Let X, Y = R and consider, for every ¢t > 0,

Lo, \) = -2 = g?) + (A= (@ — 1),

so that Loo(z,A) = (A —1)(z — 1) with S x M = {(1,1)} and
GAPL, 1. (&) =e7"[(&n)?/2.

lllustration.
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Weak convergence

Theorem. Let (z,)\) : [0,+00[ - X X Y be a solution of (NAH)
and suppose that there exists a closed convex-concave bifunction L, :
X XY — R with a non-empty set of saddle points S x M such that

V(fvn) € X X Ya / GAPLT_LOO (5’77) d7- < 4o00.
0

Assume, in addition, that the bifunction L is such that for all (Z, 5\) €
S x M and (¢,m) ¢ S x M3

Leo(Z,m) < Loo(Z,A) < Loo(§, A).
Then there exists (Z,)\) € S x M such that

w— lim (z(t),\(t)) = (@, V).

t—+oo

3R. T. Rockafellar, Saddle-points and convex analysis, in Differential Games and
Related Topics, North-Holland, pp. 109-127, 1971.



Numerical experiment

Example. Let X,Y = R and consider now, for every ¢ > 0,
1

Ki(x,\) = L(x, \) + %(m —1)% - 5()\ —1)?,

s0 that Koo (2, ) = Lo + (2 — 1)2/2 — (A= 1)2/2, § x M = {(1, 1)},
and GAPKt*KOO <§7’r]> = GAPLt*Loo (fﬂ?)

lllustration.
(%, ) (2(0),A(0))
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Tikhonov regularization

Let € : [0, +00[ — ]0, +o00[ be continuously differentiable such that
lim e(t) =0.

t—+oo

Arrow—Hurwicz differential system with Tikhonov regularization.
Consider the nonautonomous evolution system

&+ ViL(z,A\) +e(t)z =0
. (AHT)
A= ViaL(z,\) +e(t)A=0
in view of solving the saddle-value problem (P;).
This amounts to the mini-maximization of
Li:XxY —R "
et

(2, X) = Dl 0) + S5 (el — INIR).

where L : X XY — R is a convex-concave and continuously differen-
tiable bifunction (with a non-empty set of saddle points S x M).

11



Associated gap function

The gap function GAP, 1 : X XY — RU {400} reduces to
GAP,—p(§m) = sup (Le(§, 1) = L(, 1))
' (1)

~ inf (Le(v,m) — L(v,n)) = 5 1€, m)1%.

Corollary. Let S x M be non-empty, let (z, A) : [0, +00[ > X XY bea
solution of (AHT), and suppose that e € £'([0,+oc). Then there ex-
ists (Z,\) € S x M such that

If, moreover, L is “strictly convex-concave”, then

w— lim (z(t),\(t)) = (@, V).

t——+oo
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The particular case ¢ ¢ £1([0, +o0[)

Proposition. Let S x M be non-empty, let (z,A) : [0, +00] = X x YV
be a solution of (AHT), and suppose that ¢ ¢ £([0, +o00]) with either
¢ € L1([0,+00]) or |¢]?/e € L1([0,+00]). Then it holds that*

i (2(t), M(t)) = projsya (0,0).

prOij]\/[ (07 O)

4F. Battahi, Z. Chbani, S. K. Niederldnder, and H. Riahi, Asymptotic behavior of
the Arrow—Hurwicz differential system with Tikhonov regularization, (2024), available
at https://arxiv.org/abs/2411.17656.
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Numerical experiment

Example. Let X, Y =R, take L(z, A\) = A(z — 1), and consider the Tik-
honov regularization function (t) = 1/t with p € ]0,1] and tp > 0. The
(AHT) differential system reduces to
, x
T+ )\ + tfp =0
- A
A+1—x+ ITP =0.

lllustration. ((to), A(to)) (z,))

14



Outline

Conclusions



Conclusions

Case |. If the “nonautonomous part” of the (NAH) differential system
vanishes “sufficiently fast” as ¢ — +o00, then the asymptotic behavior is
characterized by the “autonomous part”:

(i) In general only weak ergodic convergence;

(i) If “limiting saddle function” is strict, then weak convergence.

Case Il. If the "nonautonomous part” of the (NAH) differential system
vanishes “sufficiently slow” as ¢ — 400, then it asymptotically dominates
the “autonomous part”.
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Thank you for your attention!

il oz
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